
1

Recursion

9-3-2004

2

Opening Discussion

■ What did we talk about last class?
■ Would anyone be willing to show us the use

of some Scheme code that uses things we
talked about last time?

■ Minute Essays
 Single quote does seem to go to a white space or

the closing parenthesis.
 Memory usage in Scheme and other functional

languages.
 Studying ActionScript 2.0 can't happen for me this

semester.

3

Recursion

■ Recursive functions are functions that call
themselves. We can use these functions in
most language, but many people shy away
from them, even when they are the easiest
way to do things. Because of the lack of
side effects, recursion is the primary way we
get anything to happen multiple times in
Scheme and other functional languages.

■ Instead of a loop variable that is altered, we
have a function that calls itself with an
altered argument and the argument acts like
the loop variable.

4

More Recursion

■ Any recursive function must have a
conditional to terminate the recursion. There
must be some situation that prevents the
function from calling itself.

■ In Scheme we can write recursive functions
that play with lists when we don't know exact
positions of things. Let's write some
example functions that do this.

5

Some Possible Functions

■ length – number of elements in a list.
■ deep-count – How many atoms are in the list and

its sublists.
■ number-list – Make a list that has the numbers

from 1 to n.
■ bound-number-list – Make a list from m to n.
■ member? - Is the item in the list?
■ append – Append two lists together.
■ map-list – Apply a function to all the elements of

a list and return a new list with the results.
 This one is more complex. It shows an example of

passing a function as an argument.

6

Tracing and Debugging

■ Obviously, a challenging aspect in any
language is how to trace through code and
debug problems.

■ The most straightforward way to do this is
with print statements. In Scheme, the
display function does this, but only displays
one item.

■ Your book gives a simple example of
enhancing this to writeln. It also shows nice
entering and leaving functions.

7

Minute Essay

■ Write a function which, given a list, will
return a list that contains every other
element of the list.

■ How comfortable are you with recursion? It
can be a tough topic, but you can take
comfort that we have at least two more
chapters on it.

