
1

Math, Data Abstraction, and Data
Driven Recursion

9-10-2004

2

Opening Discussion

■ What did we talk about last class?
■ Let's look at how you will submit your

programs to me.

3

User Defined Math Functions

■ We can write math functions as well. Last
time we did factorial and saw how Scheme
does exact arithmetic with big integers.

■ Let's write some other quick functions as
well.
 List-ref – get the specified element of a list
 Taylor-cos – do a Taylor approximation of cos

4

Data Abstraction

■ Your book uses the example of rational
numbers for data abstraction. The idea is
that we define functions to get at data in
some list structure and functions to
manipulate it.

■ The user never has to know the exact
internal representation, just the functions to
deal with.

■ We can instead do this with a complex
number data abstraction.

5

Flat Recursion

■ Functions that only play with the top level of
a list are sometimes called flat. Most of
what we have written has been of this type.
What is the exception?

■ We can write some others.
 Merge – merges two sorted lists into a single list.
 Remove – removes all instances of an item from a

list.
■ Let's take a second to look a bit closer at

how recursion works by tracing one of these
functions.

6

Deep Recursion

■ Functions that not only recurse over the
elements of a list, but also into the elements
of a list are said to use deep recursion.

■ We have done one of these, deep-count.
Let's write two others.
 Remove-all – removes all occurrences of an item

for a list and all its sublists.
 Reverse-all – reverses the list and all the sublists

in it to any depth.

7

Minute Essay

■ What are your thoughts on the speed of the
class so far?

■ Remember that your assignment is due by
tonight at midnight.

