
1

Deep Recursion

9-15-2004

2

Opening Discussion

■ What did we talk about last class?
■ Do you have any questions about the

assignment?

3

Efficiency vs. Simplicity

■ Last time I espoused the benefits of
recursive functions that build their solution
as they “pop back up the stack”.

■ When this works well, it is the ideal way of
doing things in Scheme.

■ However, it doesn't always work well. Let's
look at a function to reverse a list as an
example of this.

4

Representing Trees in Lists

■ Let's be more specific about how we can use
lists to represent trees in Scheme. We can
think of this in several different ways.

■ One simple one is to think of car as a left
child and cdr as a right child.

■ Alternately, a list can be a subtree where
each top level element is a child. If those
elements are lists they represent their own
subtrees.

■ Both these images have the problem that
data is only in leaves.

5

Fibonacci Numbers

■ A standard example of a recursive algorithm
is the Fibonacci numbers. This is a series
where each element is equal to the sum of
the previous two.

■ We can write this as

f n= n n2
f b−1 f n−2 otherwise

6

Counting Calls and Adds

■ The problem with this definition is that a
simple program can take a while to execute
for larger values of n.

■ Let's explore this by writing a simple version,
then writing similar methods that count how
many times we call the method or how many
adds we do.

7

Problems of Repeating Work

■ To see the real problem, let's draw out what
happens when you call (f 6).

■ As you can see, we repeat a lot of work.
The function gets called multiple times with
the same argument.

■ We can fix that by using a somewhat
different approach.

8

An Iterative Solution

■ Here we can make an iterative solution that
uses a helper function with 3 arguments to
make this function work in linear time.

■ As with the reverse method, we are
sacrificing some of the elegance of our
method to get efficiency. We should only do
this if it is really needed.

9

Minute Essay

■ The method of storing data in lists in
Scheme leads to a certain fundamental
speed issue. Can you think of what this is?
Why do we have that problem? How could it
be fixed?

