
1

Locally Defined Procedures

9-17-2004

2

Opening Discussion

■ What did we talk about last class?
■ Lists have to be walked. You can't do

random access. Arrays/vectors allow fast
random access. Can they be done well
immutably?

3

Funky Shortcut

■ For some reason you book doesn't mention
the eval function. The way Scheme (and
LISP) works is that every time you type
something in, it calls eval on it. All a quote
does is tell eval not to evaluate something.

■ So if you have a list that you want to apply
some function to the elements of you can
cons the function to the list and pass it to
eval.
 (eval (cons '+ '(2 3 4 5)))

4

Using eval to Turn Lists into
Functions

■ One of my biggest complaints about a
language is when it leads you to think a
thought, but won't let you implement that
thought. I have had that happen some in
C++ and I'm running into that a lot in
Scheme.

■ After significant thought I figured out how to
turn a list into a function: call eval on the
EXACT list that represents the function. So
a list starting with lambda.

5

Local Names and Let

■ As you might have noticed, define only
works at the global level and once a name is
bound, it can't be reused.

■ Sometimes it is nice to have a local name to
refer to something by. This can help
organize expressions or is really useful
when an expression would have to be done
multiple times.

■ The syntax for let is as follows:
 (let ((var1 val1) (var2 val2) ...) expr)

■ It takes the value of the expression.

6

Code

■ We want to spend the rest of the day coding
to look at what we have learned so far.

■ First let's do another deep recursion:
reverse-all.

■ Let's write a DT to do some inventory work.
It's not exciting, but it will probably help
those who haven't finished the assignment.

■ Other things we could play with today are
writing a N-body simulator or symbolic
differentiation. They seem more fun to me.

7

Minute Essay

■ Write a function that takes one list as an
argument and splits it in two, returning a list
with two lists in it. I don't care how you split
the elements, just so half go in one list and
the other half go in the other.

■ Remember that we have quiz #2 on Monday.

