
1

Grammars and Chompsky Hierarchy

10-26-2005

2

Opening Discussion

■ Do you have any questions about the quiz?
■ What did we talk about last class?
■ Have you caught up with the reading? Was there

anything in the reading you found interesting?
■ Do you have any questions about the

assignment?

3

Code

■ I want us to play with file access some. The Run
dialog will let you specify command line
arguments that could be read in using the <>
operator. Make a file that has a name on a line
followed by a number (like a phone number). Put
in several entires. Now read that in and use a
hash to look things up by name. Now look them
up by number instead.

4

Grammars

■ Grammars are a central concept in theoretical
computer science. They are formal way of
specifying “languages” or sets of strings and how
those strings can be produced.

■ The general idea of grammars is that you have
productions that map a string to another string.
How these productions are applied varies between
different types of grammars. Some styles of
grammars also have limitations on the strings that
can be on either side of a production.

5

Chomsky Grammars

■ Noam Chomsky developed a hierarchy of
grammars that have become standard models of
different computational abilities.

■ Chomsky grammars have sets of terminal and
nonterminal characters along with a set of
productions and a start symbol.

■ By convention people generally represent
nonterminal characters with capital letters and
terminals with lower case letters.

■ There are four classes of Chomsky grammars:
regular, context free, context sensitive, and
recursively enumerable.

6

Regular Expressions

■ Regular grammars have productions of the
following forms:
 A -> a
 A -> Ba or A -> aB

■ There is a single nonterminal on the left and either
a single terminal or a terminal and nonterminal on
the right. All productions with both a terminal and
nonterminal have to agree on which comes first.

■ These grammars produce languages that can be
generated with finite state automata. They have
no memory.

7

Context Free

■ Context Free (CF) grammars have productions
with a single nonterminal on the left and any string
of terminals and nonterminals on the right.

■ The languages of CF grammars are those
generated by pushdown automata.

■ Most programming languages are defined by CF
grammars.

■ Have limited memory, but access to memory isn't
random.

8

Context Sensitive

■ Context Sensitive (CS) grammars have
productions of the following form.
 αAβ −> αγβ

■ α, β, and γ are arbitrary strings of terminals and
nonterminals.

■ These are generated by a linear-bounded non-
deterministic Turing machine.

■ These are the least used of the grammars. Even
their theory isn't all that well understood.

9

Recursively Enumerable

■ Recursively enumerable grammars allow any type
of production.

■ These grammars are computationally equivalent
to a full Turing machine so they can generate
anything that you want within the bounds of what
can be computed.

10

Other Grammars

■ There are other types of grammars that aren't part
of the Chomsky hierarchy.

■ We will talk about L-systems a bit later. They are
an example of a non-Chomsky set of grammars
and they also have different levels of complexity.

■ The primary difference between L-systems and
Chomsky grammars is that Chomsky grammars
replace one randomly selected nonterminal at a
time while L-systems replace everything at each
step. They also don't technically have terminal
symbols.

11

Reminders

■ Read the next few chapters. They talk about
doing regular expressions in Perl. This is a big
part of the reason that we are studying Perl in this
class, the fact that regular expressions are built
into the language itself.

