
1

Problem Decomposition

8-31-2005

2

Opening Discussion

■ What did we talk about last class? Did anyone
explore any of the problems we looked at last
time?

■ How do we break up problems in imperative
languages? Why do we like to break up problems
in all languages?

3

Functions

■ In nearly every programming language, the
primary construct for breaking up problems is the
function. Some languages will use the terms
procedure (if nothing is returned) or method, but
the general idea is the same.

■ The idea of a function is that it is a piece of code
that we can call from someplace else and pass it
certain data. The function then returns zero or
more values.

■ How do you define functions in the languages that
you are familiar with?

4

Manageability

■ The most basic reason we like to break our code
up into functions is to keep things manageable.
Large problems are very hard to solve if we try to
tackle them all at once. We have to break them
into smaller pieces that we can actually deal with.

■ Problems can be decomposed in either a top-
down or a bottom-up manner. We generally start
with the former and often use a combination of the
two to solve large problems.

5

Code Reuse

■ From a software engineering point of view we
want to break problems up into functions because
a lot of the time we can use those functions in
multiple places so the code is effectively reused.

■ Though we don't write them, libraries are a perfect
example of this. Most scientific computing
depends very heavily on good libraries of
functions because not every practitioner is going
to have time or ability to write optimal code for
every task.

■ Let's try to make our quadratic equation code from
last time more modular by working in a function or
two.

6

Collections of Data

■ Another aspect that is critical to making imperative
programming workable is the ability to collect data
together.

■ In most standard imperative languages we do this
with arrays or structures/records.

■ Arrays all hold the same type and we specify
which element with a numeric index.

■ Structures/records can hold different types and
each element is specified by a name.

■ We need this to break the programs from last time
into functions. Why do we need to have data
grouped? What approaches can we take to do it?

7

Minute Essay

■ This was our last class talking about imperative
programming. Did this give you enough of a
review? Is there anything you want to spend a
while talking about next class before we move
onto Matlab?

■ You should read the second chapter of the Matlab
book for next class. If you don't have your book
yet, you can read the Wikipedia entry for “floating
point”.

