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Let’s get some physics fundamentals out of the way. First, the mechanics of magnetic
dipoles: 

• An atom can be treated as a magnetic dipole. 
• A magnetic dipole with magnetic moment μ in a magnetic field B will have a
potential energy U = -μB cos θ, where θ is the angle between the dipole and the
field (θ = 0 means the two are parallel). 
• The torque on the dipole will be F × r = μB sin θ. F = 0 at θ = 0 or π (parallel or
antiparallel), so the dipole will be stable at these points. 
• Thus an atom will tend to have a potential energy of U = -μB (parallel, low-
energy state) or U = μB (antiparallel, high-energy state). 

We’ll also need the idea of a Boltzmann factor from statistical mechanics – the
probability of a system being in a state with energy E is related to e-E/kT

 

In most materials, the magnetic dipole moments of the atoms are scattered in all
directions. When a magnetic field is applied, the atoms have a little freedom to move, and
try to align with the field, thus resulting in a weak overall magnetic moment. This is
paramagnetism. 

But in some materials, the magnetic moment of a given atom is affected by the alignment
of its neighbors. This will cause large blocks of atoms to all align in the same direction,
resulting in a strong magnetic moment even when an external field is not applied. This is
ferromagnetism. 

We’d like to model this effect, as well as another observed behavior -- above a certain
critical temperature, the thermal excitation of the atoms is enough to overcome the
coupling to its neighbors, and no overall magnetic moment is present. Can we come up
with a simple simulation that shows ferromagnetic behavior, and gives us the critical
temperature? 

Let’s take our ferromagnet to be a two-dimension square grid of atoms, each aligned up
(white) or down (black). We will also say that only an atom’s four closest neighbors
(horizontally and vertically) affect its alignment. This leaves five possibilities for the
initial potential energy of our atom (note that I’m using units where μ = B = k = 1): 

   ■ 
A. All four antiparallel ■ □ ■ U = +4 (highest energy state) 

   ■ 

   ■ 
B. Three antiparallel ■ □ ■ U = +2 

   □ 



   □ 
C. Two parallel □ □ ■ U = 0 

   ■ 

   □ 
D. Three parallel ■ □ □ U = -2 

   □ 

   □ 
E. All four parallel □ □ □ U = -4 (lowest energy state) 

   □ 

Let’s say we pick one of the dipoles in our grid at random, and flip its alignment over.
What will the change in energy be? And what is the Boltzmann factor for this transition? 

A. U from +4 to -4 Change = -8 Boltzmann factor = e8/T

B. U from +2 to -2 Change = -4 Boltzmann factor = e4/T

C. U from 0 to 0 Change = 0 Boltzmann factor = e0/T = 1 
D. U from -2 to +2 Change = +4 Boltzmann factor = e-4/T

E. U from -4 to +4 Change = +8 Boltzmann factor = e-8/T 

Or in general, if n of the atom’s neighbors are aligned parallel to its original state, the
Boltzmann factor for a flip in dipole alignment (and thus the probability of that transition)
will be e-2n/T. 

So let’s make an assumption. If the Boltzmann factor is greater than or equal to one, we’ll
say that the atom will happily flip, since it is moving from a higher energy state to a lower
(or equal) energy state. If it is less than one, we’ll pick a random number from zero to
one. If it is less than the Boltzmann factor, the atom will flip; even though it’s moving to
a higher energy state, random thermal fluctuations are allowing the transition. 

To begin this project you will code a model based on this description. Here’s how it could
be set: 

• Randomly initialize each cell in a square grid to “up” or “down” (10x10 runs in
a reasonable amount of time). 
• Set up a “for” loop from 1 to (large number × grid size). For example, in a
10x10 grid, I might loop from 1 to 10000, so that each cell in the grid will be
chosen 100 times. 
• Choose a cell at random, and check the alignment of its neighbors. 
• If two or more neighbors are antiparallel, flip the cell. If one or none, if a
random number is less than the Boltzmann factor, flip it anyway. 
• Display the new grid, and iterate the loop. 

Make it so that your routine can handle grids of different sizes and play with some larger



grids as well as the 10x10 one that you start with.  Make sure that the temperature is also
a parameter that you can vary since that it what you will be doing below.  You have to
take a bit of care in how you deal with the edges.  If you pick a cell at the edge, you
should compare it to “neighbors” that are wrapped around on the other side.

After you have this working we want to turn to answering the question, “What is the
critical temperature at which the spins no longer align?”  Your first attempt at this will be
done by just running your code with several different values of T to get a rough estimate
of the value.  Basically, if the fields mostly all align then you are below the critical value
and if they don't then you are above it.

Once you have a rough estimate, you will edit your code so that you can get a more
accurate measure.  Try to do this in two ways.  One is by measuring a cluster size.  That
is, how many cells with the same spin are clustered together on average?  Plot that as a
function of T to see where the transition is.  You can also check to see what fraction of
your “flips” actually flip the spin of the atom.  Above the critical temperature, most of the
checks you do will actually end up in flips.  You can plot the number of flips in a certain
number of checks as a function of T as another test of the critical temperature.


