
1

Introduction to Perl

3-22-2010

2

Opening Discussion

■ How is the project coming?

3

Basics of Perl

■ Perl is a scripting language so the scripts aren't
compiled. You simply run the scripts.

■ Perl does have a JIT compiler to improve
performance.

■ Scripts can be written with any text editor.
■ You will get syntax highlighting with vi if your file

ends in .pl.
■ There is an Eclipse plug-in as well, but it hasn't

been installed on our machines this year.

4

Simplest Program

■ Let's write the standard first program for a new
language: hello world.

■ This really illustrates what defines scripting
languages. They are very efficient for writing short
programs. They don't have the overhead of
languages like C or Java.

■ We use the print command for printing.
■ From the command line you can do “perl script.pl”

for whatever script you have written to run it. If you
make it executable with chmod you should be able
to simply execute the script.

5

Perl Variables

■ We don't have to declare variables in Perl unless
we use the strict modifier on a file.

■ Even when we do declare then we don't really
specify a type. Perl basically has three types:
scalars, lists, and hashes.

■ One of the hardest things to get used to in Perl is
the extra characters that have to be attached to
variable names.

■ For standard variables you put a $ in front of them
in their general usage. This indicates a scalar
value.

■ For lists we will put @ and for a hash (something
we will get to later) you put a %.

6

Type Conversion

■ Perl is very loose and easy with types and does
implicit type conversions.

■ For this reason, operators aren't overloaded. The
operator tells Perl what type it should be using.

■ Numbers in Perl are doubles.
■ If you use a string in a place where a number is

wanted, Perl tries to convert it.
■ If you use a number where a string is wanted, Perl

will convert it.

7

Comments

■ Comments in Perl are made with the # sign.
Everything after the # is a comment.

■ Using #! tells the system what program should be
used to run a script and is generally found on the
top line of Perl scripts.

8

Basic Syntax

■ On the surface, the basic syntax of Perl looks a lot
like C. At least for things like assignments,
conditionals, and loops.

■ Functions look a bit different, but we'll get to those
later.

■ You use + to add numbers and . To concatenate
strings.

■ Strings with double quotes will substitute values
for variables that appear in them. Strings in single
quotes do not do this.

9

Files

■ The open and close commands are used to open
and close files.
 open(FILE_HANDLE,$filename);
 close FILE_HANDLE;

■ Putting a file handle in angle braces, <...>, will
read from that file.

10

Arrays/Lists

■ List literals are specified with parentheses and
have the values inside separated by commas.

■ Array variables are prefixed with @, but only when
referring to the whole list.

■ We get out elements with []. Because we are
pulling out a single scalar the variable is preceded
with a $.

11

Context

■ How Perl interprets many statements depends on
the context. Normally scalar vs. list context.

■ If you read a file in a scalar context it will give you
back one line from the file. If you read it in a list
context it will give you a list with all the lines.

12

Problems

■ Let's continue to play around in Perl and do some
reading from files to see how different things work.

13

Reminders

■ Projects due on Friday if you haven't turned them
in earlier.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

