
1

Flow Control and Basic RegExs

3-26-2010

2

Opening Discussion

■ Do you have any questions about anything?

3

Conditionals in Perl

■ Perl has the standard if statement that you are
used to.
 Use the normal comparison operators for numbers.
 For string data you use letter symbols. Use eq for

equality.
■ The if can follow a single statement.
■ Format with if in front requires curly braces so

they have elsif.
■ There is also an unless that works like if, but the

action happens when it is false. This exists
because Perl programs don't like to use not.

■ Boolean operators and, or, not are in English, not
symbols. Short circuit so can be used for flow
control.

4

Loops in Perl

■ Perl has a full compliment of loops. Most are just
like what you are used to in C family language.

■ while loop is the same.
■ do-until instead of do-while.
■ for loop is the same.
■ for each loop is different and goes through the

elements of a list.

5

Writing Files

■ We saw how to use open to open a file for reading
and then how to read from it.

■ If you precede the file name with a “>” the handle
will be for writing. (It's like directing output of a
program to file in Linux.)

■ That deletes and existing file. Use “>>” to append.
(Also like Linux.)

■ The file handle becomes the first argument to
print. There is no comma after the handle.

6

Regular Expressions

■ Regular Expressions are a really big deal in Perl.
They are a significant part of why so many people
use Perl.

■ Regular expressions can be used with several
types of operations.

■ Matching – put the matching expression between
matched symbols, typically //.

■ Substituting – The normal format is s/// where
after the first / you put the expression to match
and after the second / is what to replace it with.
Put a g at the end to substitute multiple. An i to
ignore case.

■ Transcription – replace chars using tr///.

7

Binding for RegExs

■ By default a regular expression will happen on the
variable $_. To make it happen on something else
use the binding operator, =~.

8

Closing Remarks

■ Have a good weekend.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

