
1

Subroutines

3-29-2010

2

Opening Discussion

■ Do you have any questions about assignment #6?

3

Regular Expressions

■ Regular Expressions are a really big deal in Perl.
They are a significant part of why so many people
use Perl.

■ Regular expressions can be used with several
types of operations.

■ Matching – put the matching expression between
matched symbols, typically //.

■ Substituting – The normal format is s/// where
after the first / you put the expression to match
and after the second / is what to replace it with.
Put a g at the end to substitute multiple. An i to
ignore case.

■ Transcription – replace chars using tr///.

4

Binding for RegExs

■ By default a regular expression will happen on the
variable $_. To make it happen on something else
use the binding operator, =~.

5

Calling Subroutines

■ The syntax of calling a subroutine is very much
like the syntax of calling a function in C. We give
the name of the subroutine followed by an
argument list in parentheses.

■ In Perl the parentheses are optional in some
cases. (Definitely when there are no arguments.)

■ Older Perl implementations required a & in front of
the subroutine name. Only a few usages would
require that now.

■ Subroutines can be called before they are defined
in Perl.

6

Writing Subroutines

■ A subroutine in Perl looks like the following:
 sub name {

➔ statements
 }

■ Note the lack of an argument list. Instead, the
variable @_ will contain the arguments passed in.

■ The my statement can be used to declare local
variables. This is also how we get values out of
@_. Note that Perl allows list assignments for this
purpose.

■ A return statement allows you to return values
from a subroutine.

7

Passing Arguments

■ By default, Perl passes arguments by value.
■ The argument list is a list of scalars. Passing

things other than scalars leads to flattening.
■ You can pass a reference by putting \ in front of

the variable you are passing at the point of the
call.

■ When using a reference in the subroutine you
have to prepend the type of what you are pulling
out in front of the variable name. So you get things
like $$i, @$a, %$h, or $$a[5].

8

Strict

■ To make it so that Perl will force you to declare
variable put the following line at the top of your
program.
 use strict;

■ It is also a good idea to add the following line at
the top of your code.
 use warnings;

9

Command-Line Arguments

■ When you run a Perl program, any arguments
specified on the command line are put in a
variable called @ARGV

■ As a bonus, the $0 variable stores the name of the
program.

10

Modules and Libraries

■ For subroutines that you will want to reuse often it
can be helpful to put them into a separate file.

■ It is common to name these files with .pm and the
last line of the file needs to be 1;

■ Inside your other programs the use keyword
allows your code to use your module.

11

Perl Debugger

■ If you run Perl with the -d option it will go into an
interactive debugging mode.

■ You can force this by adding it to the #! at the top
of the program or using perl -d from command
line.

■ The command q will stop the debugger. h and h h
give help.

12

Closing Remarks

■ We have a quiz on Perl next class.
■ Assignment #6 is due on Friday.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

