
1

Randoms and Hashes

4-5-2010

2

Opening Discussion

■ Do you have any questions about assignment #6?

3

Strict

■ To make it so that Perl will force you to declare
variable put the following line at the top of your
program.
 use strict;

■ It is also a good idea to add the following line at
the top of your code.
 use warnings;

4

Command-Line Arguments

■ When you run a Perl program, any arguments
specified on the command line are put in a
variable called @ARGV

■ As a bonus, the $0 variable stores the name of the
program.

5

Modules and Libraries

■ For subroutines that you will want to reuse often it
can be helpful to put them into a separate file.

■ It is common to name these files with .pm and the
last line of the file needs to be 1;

■ Inside your other programs the use keyword
allows your code to use your module.

6

Perl Debugger

■ If you run Perl with the -d option it will go into an
interactive debugging mode.

■ You can force this by adding it to the #! at the top
of the program or using perl -d from command
line.

■ The command q will stop the debugger. h and h h
give help.

7

Random Numbers

■ There are many situations in scientific computing
when we want to have random numbers.

■ In biology an example would be modeling
mutations.

■ In general models will use random sequences for
elements that occur at a lower level than the
model deals with. So instead of doing a detailed
model of that process you do intelligent random
selections. This often means using different types
of random distributions.

8

Perl Subroutines

■ srand – seeds the random number generator
■ rand – gets a random number
■ Other helpful subroutines

 scalar - evaluates something in a scalar
context.

 int - casts a value to an int.
■ Remember parentheses can be optional.

9

Mutating DNA

■ The book runs through an example of code that
takes a DNA sequence and randomly mutates it
by picking random positions and substituting
random bases into those positions.

■ This uses a four argument version of substr that
substitutes in for a segment of the original string.

10

Hashes

■ The third standard data type (in addition to scalar
and array) in Perl is the hash.

■ A hash is much like an array except that it isn't
indexed by an integer, it is indexed by a string.
They are sometimes called associative arrays.

■ The full hash variable is preceded with a %. Use {}
to index from it. When indexing you put a $ in front
because you are pulling out a scalar.

■ Hashes can be initialized as a list where
consecutive elements are key/value pairs. The =>
symbol can replace commas between key and
value.

11

Code

■ Let's play with hashes some to see how they
work.

12

Closing Remarks

■ Remember to turn in assignment #6.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

