
1

Sequence Alignment

4-9-2010

2

Opening Discussion

■ Do you have any questions about the
assignment?

■ Do you have any questions about the reading?
■ Student presentations!

 I would like to have you all do a round of lectures.
Each person should do 1-2 classes on a topic mostly
of your choosing though I have some suggestions.

➔ Sci Comp Languages, past, present, future
- X10
- Fortress
- Fortran

➔ Grand Challenge Problems and computation
➔ Internet 2?
➔ Anything else you find of interest.

3

Comparing Sequences

■ Once biologists have sequences of DNA or RNA
from difference species, they want to be able to
compare them.

■ This comparison can't be a simple equality
comparison. The desired comparison is one of
homology, could one have evolved from the other
or could they have shared a common ancestor.

■ The details of how these comparison are done is a
bit beyond the scope of this class. However, we
can speculate on it a bit to see what actually
matters.

4

Longest Common Subsequence

■ A standard problem in computer science that can
give us some insight into how sequence
comparisons work is the longest common
subsequence problem.

■ You are given two strings and are asked what is
the longest string that appears in proper order in
both of the strings.

■ Let's look at some examples and consider
different ways that we might go about trying to
solve this problem.

5

Recursive Solution

■ The most intuitive solution to the longest common
subsequence problem is a recursive one. First we
can build up a recurance relationship in
mathematical terms.

■ Once we have it in this form we can convert it into
code fairly easily.

lcs m ,n={
0 if m=0∨n=0

lcs m−1,n−11 if s1m=s2n
max lcs m−1,n , lcs m ,n−1otherwise}

6

Speed Issues

■ What is the order of the code we just created?
Will we be able to apply this to DNA sequences
with many thousands of base pairs?

7

Longest Common Subsequence

■ While a recursive function works, it has the
downfall of scaling exponentially with string size.
Because of this, our method isn't really practical to
use.

■ Let's look at some alternate methods of solving
this problem and other optimization problems that
will make them tractable.

8

Dynamic Programming (DP)

■ The problem with our recursive solution is that it
winds up solving the same problem over and over
again. This is fairly common in optimization
problems.

■ When things do this they exhibit optimal
substructure. That implies that the optimal solution
for a problem is built from optimal solutions to
smaller problems. Only when this is true you can
use dynamic programming.

■ The idea of dynamic programming is to fill in
solutions starting with very small problems and
build up instead of recursing down.

9

Applying DP

■ To build a DP solution we must first find the
recursive solution, then devise a way to fill in
solutions from the bottom-up.

■ All recursive solutions have termination
conditions. In a DP solution that is where you
start. Often you fill in an array with these values.
Then you run through the rest of the array filling in
values. The trick is that you compute each new
value by looking up solutions in the parts of the
array you are already filled in.

■ Using our recurance relation from last class we
can do this for LCS.

10

Steps for DP

■ To apply DP we first need to develop the
recurance relationship. Figuring out the best
arguments for this can be a challenge.

■ Next we write a solution that fills in an array with
the answers looking into the array for earlier
solutions.

■ If you need to you can also reconstruct the optimal
solution by walking back down the array and
taking the optimal path.

11

Memoization

■ An alternative to DP that can be almost as fast is
memoization. In this approach we write the
recursive solution, but pass in an extra argument
that stores solutions we have already found.

■ When the function runs it checks the stored values
before doing a recursive call so it won't solve
subproblems that it has solved previously.

■ For some problems this method is a lot easier to
think about. Memoization can also be used for
problems that don't have optimal substructure so
DP can't be applied.

12

Closing Remarks

■ Assignment #7 is due Monday.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

