Introduction to CSCI 3294

Program Analysis
Dr. Mark Lewis
9-2-2001

Personal Introduction

Education
1996 BS in Computer Science and BS in
Physics from Trinity
1998 MS in Astrophysics and Planetary
Science
2000 MS in Computer Science
2001 Ph.D. in Astrophysics and Planetary
Science
Extracurricular activities: basketball and
volleyball

Research Interests

Dissertation was on “Collisional Dynamics
of Strongly Perturbed Planetary Rings”

I have research interests in Programming
Languages Theory, Parallel Computing,
Quantum Computing, and Large Scale
Simulation.




Syllabus Overview

Course Webpage -
http://www.cs.trinity.edu/~mlewis/CSCI3294-F01

Contact info - Office HAS 201K, Phone
999-7022, e-mail mlewis@trinity.edu
Office hours - 9:30-10:00 MWF, 8:30-
11:30pm T, 3:00-4:00pm MW or by
appointment

Text - None. The readings for this course
will be research papers from journals and
proceedings.

Course Description

In this class we will look at various topics in
program analysis. Most of the semester will be
focussed on pointer or points-to analysis. This
is the process of figuring out what allocation
sites the pointers in a program are able to point
to. At the end of the semester we will see some
of how this is applied so that compilers can
optimize generated code. We will also have at
|east one class period to cover a paper on a
topic of the classes choosing.

Class Format

For the first five classes this course will be
run as a normal lecture format class
though perhaps with a bit more discussion
than many of your other classes.

Beyond that the class will be “run” by you
as you give presentations on papers.
Each day 2-3 students will present the
paper for that day so that in the end each
of you will have made two presentations.




More on Format

While only 2-3 students will be presenting
on a given day, the entire class is
expected to have read every paper so that
we can engage in discussions. I will also
want each student to come to class with
some written questions about the paper.
Those will be used to start the discussion
after the normal presentations are done.

Grading

The course grade will be based on three
components: your presentations (60%), your
participation in class when not presenting
(20%), and a final exam (20%).

The final exam will be open note and open
“book” so you can bring basically any reference
you want into it. I dont intend it to be that
hard, it’s just to make sure you have understood
what we have talked about to a reasonable
degree.

Schedule of Papers

The syllabus on the web includes a listing
of papers and a general description of
what each one deals with. I need you to
pick which papers you are interested in
presenting so that I can add you to that
page. I will be doing the first five weeks
of class to help bring you up to speed on
topics that will be important for you to
understand the readings.




What do you know now?

How many of you have taken the
Principals of Programming Languages
class?
Survey of languages
What languages do you know?
What are the strengths and weaknesses of
each?
What paradigm does each one generally
follow?

What is Program Analysis?

The name says it all here, this includes
anything that one might want to do to try
to gather more information about a
program for various purposes.

What types of things can you think of that
we might want to know about a program?
Why would we want to know those
things?

What is Points-to Analysis?

Points-to analysis is one of the most
significant forms of program analysis.
It gives us information on what memory
locations a specific pointer can point to.
Different types of points-to analysis give
us more or less information.

Context sensitive analysis

Flow sensitive analysis




When do we use them?

The most obvious time to use program
analysis is probably as part of a compiler
when extra information about the nature
of the program can aid optimization.

In addition to that program analysis can
be used both at compile time and run
time to help track down bugs in
programs.

Uses for Optimizing

Removing virtual function calls when only
one subclass can reach a particular call.
Identifying natural parallelism when
section of memory are independent.
Putting objects on the stack or removing
semaphore checks in Java.

Determining memory use to intelligently
implement preloading of memory.

Impact of Newer Hardware

Some of these optimizations would not
have been important 5 years ago.
However, the nature of processors and
the location of bottlenecks has changed in
that time.
The gap between processor speed and
memory latency has increased so cache
memory is much more significant.

Processors have to have extended pipelines
to reach higher dock rates.




Uses for General
Debugging

Language choices like strong typing can
allow for better error detection at compile
time and analysis can strengthen this
further to find likely errors before the
program ever runs.

Bugs that get through can be more easily

isolated with programming slicing and
analyses that look at effect propagation.

Minute Paper

In most of my classes I do this every class
meeting. I will only do it the first 5 weeks
in this class.

What things that I've discussed seem
most interesting/appealing to you? What
do you think I will need to cover in the
next 4 weeks so that you are prepared to
read the papers you will be presenting?




