Typing in OOPLs

9-11-2001

Typing in General

Strong vs. Weak
In a strongly typed language, every
statement in the language is checked for type
either at compile time or at run time. The
types of assignments, parameters, etc. will
ALWAYS agree in a strongly typed language
Or an error occurs.

Static vs. Dynamic

Static checking is done at compile time,
dynamic checking at runtime.

Two Uses of Inheritance

Inheritance for reuse: This is probably
one of the main things you learned about
inheritance here. However, I personally
feel that it hasn't worked all that well.

Inheritance for subtyping: This is largely
what we are concerned with in this class.
Java expanded on this by having
interfaces.




Assignment Rules

You can make an assignment of u=t (with
types U and T) when
T<:U - always with no check
U<:T - this is a narrowing operation and
requires a runtime check. InJava or C++ it
would require an explicit cast.
Their rule for ordinal types isn't used
much in modern languages.

Arrays

What you can do with arrays depends
significantly on how the language deals
with arrays.

In Java arrays are objects and all objects
are references so it is easy to put
elements of a subtype in an array of the
supertype.

In C++ the array actually allocates a
block of memory to store things.

Name Equivalence vs.
Structural Equivalence

The languages you are likely to work with
use name equivalence. Types are
compared in relation to their declarations.

Structural equivalence seems to have
generally lost the battle here. Part of that
is because we don't want unintended
overlaps.

Java can deal with this somewhat because
of the compact size of bytecodes.




Inclusion Polymorphism

One feature of a subtype is that an object
of any subtype can used in place of an
object of a supertype.

This leads to a form of universal
polymorphism called inclusion
polymorphism. Code can be written once
to work with a supertype and the same
code can be executed with any subtype.

Virtual Functions

In order to fully take advantage of
inclusion polymorphism, objects need to
be able to perform specialized behaviors
depending on type for a given function
call. That is to say that when a method
foo of an object is invoked it should be
able to call a method specialized the the
specific suptype and not just the function
of the supertype. This is what virtual
functions do.

Virtual Function Tables

The simplest method of implementing
virtual functions is through virtual function
tables. This only works with a simple
implementation when the language has
only single inheritance.

When you have single inheritance, the
functions and data members of a class
can be numbered where the new
members and methods of subclasses have
higher numbers.




Single vs. Multiple
Inheritance

In a language with multiple inheritance the
implementation is more difficult (we might read
a paper by Stroustrup on how C++ implements
this). However, the general idea remains the
same.

Not all languages use this type of
implementation to achieve Universal
polymorphism. Smalltalk and JavaScript resolve
function calls at runtime. Templates and Java
generics (should be present in 1.4) enable
resolution without subtyping at compile time.

Minute Essay

Are there things we talked about today
that you think we need to discuss more?
What other topics do you think need to be
discussed before we launch into pointer
analysis? Would you like to have a
discussion of hardware to help motivate
some of the optimization techniques?
Would you like me to make the Stroustrup
paper the paper for next class?




