Points-To Analysisin Almost Linear Time
CSCI 3294
OCTOBER 9, 2001

Josh Bauman
Jason Bartkowiak

OUTLINE
INTRODUCTION
THE ALGORITHM
. The Sour ce Language
Types
Typing Rules
Stages of the Algortihm
Processing Constraints
Complexity
IMPLEMENTATION
RELATED WORK
CONCLUSION

Points To AnalysisIn Linear Time

§Paper Written by Bjarne Steensgaar d(Micr osoft Resear cher)
8Written in 1995/ Presented Jan. 1996

8Flow I nsensitive/ Linear Time

§Fastest Interprocedural Algorithm @ time of publication
§Based on a NON-Standard Type System

IMPORTANT ASPECTS OF THE RESEARCH

A Type System for describing a universally valid storage shape
graph (SSG) for aprogram in Linear Space...

A Constraint System which givesthe algorithm better results...

A Linear TimeAlgorithm for POINTS-TO Analysis by solving a
constraint system...

THE SOURCE LANGUAGE

THE SOURCE LANGUAGE
THE SYNTAX OF THE LANGUAGE ISASFOLLOWS:

g

ncately)

x=funif...f, 14T) 8
LI S Y

Figure |: Abstract syntax of the relevant statements. S, of the source
[l

e irrelevant for

purposes of this f

EXAMPLE OF FUNCTIONSIN THE LANGUAGE.....

Add1l=fun(x) —— (r)
xaddone = add(x 1)
fi

result = Add1(99)

fact = fun(x)—+r)
x1

result = fact(10)

TYPES

TYPESOF THE LANGUAGE
NON-STANDARD SET OF TYPES
*Typesdescribe:
* Location of variablesand locations created by dynamic allocations

A Set of Locations as well as possible runtime contents of those locations
*A TYPE can be viewed asa NODE in a SSG (Stor age Shape Graph)

Thefollowing productions describe our NONSTANDARD set of types used by our
Points-To Analysis:

a = THd
7= efo) _
A=l |3|Ill;a|...m;)['mk.|.|...m|,.|.|,|,)

TYPING
RULES

TYPING RULES

*Based on Non-Standard Set of Types
*Specify when aprogram isWELL-TYPED

TYPING RULES(CONT'D.)

Before introducing the typing rules we must present the notion of partial
ordering and why it isimportant to the language’ stypingrules.....

obvious’ typing rule
Abx: I'efl:-."tg /

Aby - ref{oc

AFwelltyvpedix = y)

TYPING RULE
(W/PARTIAL ORDERING)

TYPING RULES

Ak ref{on) Abxreflrell) %)

Aby el Tovelfypedis = alocateTy

Al ref(refla) %)

Abx el
A by refrefon) x)
mdm

Trvelhypedi = o)

A twellipedx = ... Ty

Abx creffad)
A bp :refi_ x lami nd
AF

Figure 3; Type rules for the relevant statement tvpes of the source kinguage. All variables are assumed to have been asscuiated with type
in the type environment ames, so the type environment can describe all variables in all
scopes simultaneously 1 1o restrictions on the type component if represents,

EXPLANATION OF A STORAGE SHAPE GRAPH (SSG)

::ix a: my=ref(ryx 1)
) = &y :
if p then kj *
e x: n=rel(Lx 1)
o y: me=refirinl)
4 2T
' 5T
c‘_&v pr w=ref(Lx 1)
Figure 4: Fxample prograim, a typing of same that obeys the typing rules, and graphical representation of the correspondia

araph. Nobetha variables x nd 2 are describecl by the same type. Even though types 7 and s ae struchurally eguivalent (s
and 7y and 7). they are nol considered the same types.

NOTE: TYPING SYSTEM ALLOWSONLY ONE
OUTGOING EDGE (TYPE VARIABLE CAN NOT BE
ASSOCIATED WITH MORE THAN ONE TYPE)

ALGORITHM STAGES

ALGORITHM STAGES

«Start w/ assumption that all variablesare described by diff. types
Initially typeof all variablesis: pef| | J_':|

Type Variable consists of an equivalence class representative
(ECR) with associated typeinfo.

*Merge Typesas necessary to ensure WEL L-TYPEDNESS

Joining two types will NEVER make a statement that was well-
typed no longer be well-typed...

AND...when all program statementsare WEL L-TYPED, the
program isWELL-TYPED

PROCESSING CONSTRAINTS

Typeof Constraint : Inequality Constraint i .q 1

If the“Left Hand Side” type variableis associated with type
other than bottom, then two type variables MUST bejoined to
meet the constraint.

If“Left Hand Side” type variableis associated with “bottom” ,
then thereisno need to join thetwo variables at thistime...

omMrECA MOZMAMMZ =

O AN A s

Joinien, e
et &y = type(e|)
£ = typele:)

Figure 6 Rules for unifi
its ECR ang

COMPLEXITY

Space Cost = # of ECR’s + # of JOIN operations

Initial # of ECR’s— proportional to # of variables in the program

Time Cost - depends on “cost” of traversing statements of the
program, “cost” of creating ECR’s and types, the “ cost” of
performing JOIN operations, and the “cost” of find operations on
ECR's

I mplementation

*Written in Scheme

*Runtimeislinear

I mplementation

e Table 1- All variables are included
*Table 2 - Some variables taken away

eTable 3 - Optimized form of Table 2

0123345675001 23356, [0, _#d . 2. A~ 5. 3 100 3% _ 8 _ o]

T T T

[Corbaon [mo s v 13 12

Related Work

*Henglein - used type inference

*Weihl - points-to analysisis closest
represented

Related Work

Flow-sensitive analyses
*Chase and Ruf’s algorithm -
interprocedural data give polynomial
time
*Emami - Exponentid time
*Wilson and Lam - Exponentia Time

Related Work

eAlias Anaysis- Builds and maintainsa
list of access path expression that may
evaluate to the same location.

«Context sensitive - Assumes runtime

model that makes all ocation regions
explicit Related Work

Related Work

» Andersen —

*Non-sensitive = O(A?), A isthe # of
abstract locations.

*Sensitive = O(A%)

*Compared to our solution, whichis
O(A)

Conclusion & Future

eAlmost linear time
*Problems

eFuture - Greater Precision
*Fow-sensitive
«Context-sensitive

