
1

Points-To Analysis in Almost L inear Time

Josh Bauman

Jason Bar tkowiak

CSCI 3294

OCTOBER 9, 2001

OUTLI NE
Ø INTRODUCTION

Ø THE ALGORITHM

• The Source Language

• Types

• Typing Rules

• Stages of the Algor tihm

• Processing Constraints

• Complexity

Ø IMPLEMENTATION

Ø RELATED WORK

Ø CONCLUSION

Points To Analysis In L inear Time

§Paper Written by Bjarne Steensgaard(Microsoft Researcher)

§Written in 1995 / Presented Jan. 1996

§Flow Insensitive / L inear Time

§Fastest Interprocedural Algor ithm @ time of publication

§Based on a NON-Standard Type System

IMPORTANT ASPECTS OF THE RESEARCH

• A Type System for descr ibing a universally valid storage shape
graph (SSG) for a program in L inear Space…

• A Constraint System which gives the algor ithm better results…

• A L inear Time Algor ithm for POINTS-TO Analysis by solving a
constraint system…

THE SOURCE LANGUAGE

THE SOURCE LANGUAGE

THE SYNTAX OF THE LANGUAGE IS AS FOLLOWS:

2

EXAMPLE OF FUNCTIONS IN THE LANGUAGE…..

Add1 = fun(x) (r)

xaddone = add(x 1)

fi

 result = Add1(99) TYPES

TYPES OF THE LANGUAGE

NON-STANDARD SET OF TYPES

•Types descr ibe:

• Location of var iables and locations created by dynamic allocations

• A Set of Locations as well as possible runtime contents of those locations

•A TYPE can be viewed as a NODE in a SSG (Stor age Shape Gr aph)

The following productions descr ibe our NONSTANDARD set of types used by our
Points-To Analysis:

TYPING
RULES

TYPING RULES

•Based on Non-Standard Set of Types

•Specify when a program is WELL-TYPED

TYPING RULES (CONT’ D.)

Before introducing the typing rules we must present the notion of partial
order ing and why it is important to the language’s typing rules…..

“ obvious” typing rule

TYPING RULE
(W/PARTIAL ORDERING)

3

TYPING RULES
EXPLANATION OF A STORAGE SHAPE GRAPH (SSG)

NOTE: TYPING SYSTEM ALLOWS ONLY ONE
OUTGOING EDGE (TYPE VARIABLE CAN NOT BE
ASSOCIATED WITH MORE THAN ONE TYPE)

ALGORITHM STAGES

ALGORITHM STAGES

•Star t w/ assumption that all var iables are descr ibed by diff. types

Initially type of all var iables is :

Type Var iable consists of an equivalence class representative
(ECR) with associated type info.

•Merge Types as necessary to ensure WELL-TYPEDNESS

Joining two types will NEVER make a statement that was well-
typed no longer be well-typed…

AND…when all program statements are WELL-TYPED, the
program is WELL-TYPED

PROCESSING CONSTRAINTS

Type of Constraint : Inequality Constraint

I f the “ Left Hand Side” type var iable is associated with type
other than bottom, then two type var iables MUST be j oined to
meet the constraint.

I f “ Left Hand Side” type var iable is associated with “ bottom” ,
then there is no need to join the two var iables at this time…

INFERENCE RULES

4

COMPLEXITY

Space Cost = # of ECR’ s + # of JOIN operations

Initial # of ECR’s – proportional to # of variables in the program

Time Cost - depends on “cost” of traversing statements of the
program, “cost” of creating ECR’s and types, the “cost” of
performing JOIN operations, and the “cost” of find operations on
ECR’ s

Implementation

•Written in Scheme

•Run time is linear

Implementation

• Table 1- All variables are included

•Table 2 - Some variables taken away

•Table 3 - Optimized form of Table 2

Table 1 Table 2

5

Table 3

Related Work

•Henglein - used type inference

•Weihl - points-to analysis is closest
represented

Related Work

Flow-sensitive analyses

•Chase and Ruf’s algorithm -
interprocedural data give polynomial
time

•Emami - Exponential time

•Wilson and Lam - Exponential Time

Related Work

•Alias Analysis - Builds and maintains a
list of access path expression that may
evaluate to the same location.

•Context sensitive - Assumes runtime
model that makes allocation regions
explicit Related Work

Related Work

• Andersen –

•Non-sensitive = O(A2), A is the # of
abstract locations.

•Sensitive = O(A4)

•Compared to our solution, which is
O(A)

Conclusion & Future

•Almost linear time

•Problems

•Future - Greater Precision

•Flow-sensitive

•Context-sensitive

