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Alpha and IA64

Executive Summary

Applications have two types of parallelism: instruction-level parallelism and thread-level
parallelism.  Instruction-level parallelism enables a processor to issue multiple
instructions in the same cycle.  Instruction-level parallelism can be static (discovered by
the compiler at compile-time) or dynamic (discovered by the processor at run-time).
Thread-level parallelism enables a processor to run multiple threads, processes, or
programs at the same time.

An Alpha processor will exploit static and dynamic instruction-level parallelism with out-
order execution, and thread-level parallelism with simultaneous multithreading.  Out-of-
order execution has a performance benefit of 1.5-2x over in-order execution.
Simultaneous multithreading has benefit of 1.5-3x over single threaded execution.

 An IA64 processor will only exploit static instruction-level parallelism.  It cannot take
advantage of dynamic instruction-level parallelism or thread-level parallelism.  IA64
defines a set of architectural extensions to permit compilers to identify more instruction-
level parallelism.  These architectural extensions will make it very difficult for an IA64
processor to implement out-of-order execution or simultaneous multithreading efficiently.
For most applications, the small benefit that these architectural extensions give compilers
does not equal the performance lost by not using these dynamic techniques.

Alpha will be superior to IA64 on commercial applications.  Commercial applications are
very sensitive to code size.  The IA64 instruction encoding increases the code size of a
program by at least 33%, and the compiler techniques required by the IA64 introduce
many additional instructions.  Commercial programs are difficult to analyze at compile-
time, and IA64 cannot dynamically adjust to program behavior at run-time.  Commercial
programs have very low instruction-level parallelism, but they are typically explicitly
multithreaded.  Each thread is very sequential and includes long delays waiting for
memory.  The IA64 strategy of searching for instruction-level parallelism cannot find the
orders of magnitude improvements available to Alpha through simultaneous
multithreading.

Alpha will be superior to IA64 in high performance technical computing.  Memory
bandwidth and the scalability of the system limit the performance of most high
performance technical applications.  Future Alpha processors are adding a low-latency,
high-bandwidth memory interface on chip, together with on-chip support for distributed
shared memory.  The next generation Alpha processors will have the fastest memory
system in the industry.  Alpha will be the leader in high performance technical
computing.
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1. Introduction

Future Alpha processors will be developed around two architectural concepts: out-of-
order execution and simultaneous multithreading.

•  Out-of-order execution enables the processor to schedule the execution of instructions
in an order that maximizes program performance.  It has a proven benefit of 1.5-2x
over in-order  execution.

•  Simultaneous multithreading (SMT) enables multiple threads (or processes) to run
simultaneously on a single microprocessor.  Most server applications are divided into
multiple threads, and SMT permits these applications to take full advantage of the
multiple execution units on the processor.  SMT has a benefit of 1.5-3x over single
threaded execution.

These two features permit an Alpha processor to exploit both thread-level parallelism and
instruction-level parallelism.  The processor can use these two types of parallelism
interchangeably, and dynamically adapt to the varying requirements of the application.

Intel has chosen a markedly different direction than Alpha.  Intel is introducing a new 64-
bit instruction set architecture called IA64. They have called the architecture EPIC, for
Explicitly Parallel Instruction Computing, but it is essentially a VLIW (Very Long
Instruction Word) architecture.  The IA64 architecture is very similar to the Cydrome
machine, a failed minisupercomputer company of the 1980s.  The first implementation of
IA64 is called Merced, with a follow-on implementation called McKinley.

With the IA64, Intel is focusing on a compiler-driven technology to increase instruction-
level parallelism, and is ignoring other proven ways to improve performance on large
applications.  IA64 is developed for an in-order execution model, with a set of new
architectural extensions to permit compilers to identify more instruction-level parallelism.
These architectural extensions will make it very difficult for IA64 processors to
implement out-of-order execution or simultaneous multithreading efficiently.  For most
applications, the small benefit that these architectural extensions give compilers do not
equal the performance lost by not using these dynamic techniques.

2. Design Philosophy

IA64: a smart compiler and a dumb machine
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The IA64 design is a derivative of the VLIW machines designed by Multiflow and
Cydrome in the 1980s.  The key idea is a generalization of horizontal microcode: in a
wide instruction word the processor presents control of all of the functional units to the
compiler, and the compiler precisely schedules where every operation, every register file
read, every bypass, will occur.  In effect, the compiler creates a record of execution for
the program, and the machine plays that record.  In the early VLIWs, if the compiler made
a mistake, the machine generated the wrong results; the machine had no logic to check
that registers were read in the correct order or if resources were oversubscribed.  In more
modern machines such as the IA64 processors, the machine will run slowly (but
correctly) when the compiler is wrong.

The IA64 design requires the compiler to predict at compile-time how a program will
behave.  Traditionally, VLIW-style machines have been built without caches and focused
on loop-intensive, vectorizable code.  These restrictions mean the memory latency is
fixed and branch behavior is very predictable at compile-time.  However, IA64 will be
implemented as a general-purpose processor, with a data cache, running a wide variety of
applications.  In most applications, the latency of a memory operation is very difficult to
predict; a cache-miss may have a latency that is 100 times longer than a cache hit.
Alpha’s out-of-order design can dynamically adjust to the cache pattern of the program;
on an IA64 processor, when the compiler makes a mistake, the machine will stall.

Similarly, the IA64 design requires the compiler to move code across branches to find
parallelism.  However, this decision requires the compiler to predict branch direction at
compile-time.  This is very difficult to do, and even with elaborate profile-feedback
systems, where a program is run to gather information about its behavior before it is
compiled, compile-time branch prediction rates are at best 85%. Without feedback, the
compile-time rates are much closer to 50%.  In contrast, hardware branch predictors are
95-98% accurate.  An IA64 design will be executing unprofitable speculative instructions
3-10x more frequently than an Alpha design.

The IA64 is an architectural idea that was developed for vectorizable programs.  Intel has
tried to extend it to commercial applications, but it is fundamentally the wrong design for
these problems.

Alpha: a smart compiler and a smart machine

An explicit goal in the development of the Alpha architecture was to enable innovative
performance improvements in compilers, architecture, and circuit implementation.  We
did not add features to the instruction set architecture that make compiler improvements
easy but hardware improvements difficult.  In the early 1990s, we designed a VLIW
version of Alpha similar to IA64 [1,2,3,4,5,6].  During this process we discovered that
most of the compiler technology for a VLIW processor could equally well be applied to a
RISC processor, and that by avoiding IA64-style extensions to Alpha, we could also
implement an out-of-order processor.
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Alpha is designed to exploit both compile-time and run-time information.  We agree with
the IA64 designers that the compiler should create a record of execution for a program.
However, we also recognized that the processor will know at run-time additional
information about a program’s behavior, for example, whether a memory reference is a
cache miss and what direction a branch executes.  Rather than stall the processor when
the compiler is wrong, we designed an out-of-order issue mechanism that allowed the
machine to adapt to the run-time behavior of the program.  In addition, a compiler has a
restricted view of the program and often cannot optimize across routine or module
boundaries.  At run-time, an out-of-order processor can find parallelism across these
boundaries.  Compiler technology must be combined with out-of-order execution to
extract the most instruction-level parallelism from a program.

Simultaneous multithreading permits an Alpha processor to exploit thread-level
parallelism in addition to instruction-level parallelism.  Most commercial applications
have very small amounts of instruction-level parallelism, but they are frequently
composed of multiple parallel threads.  SMT enables an Alpha processor to achieve large
speedups on these applications.  SMT also permits the processor to exploit instruction-
level parallelism fully when it is available.

Alpha is designed for a wide range of commercial applications.  Its industry-leading
memory bandwidth and high floating point performance will enable it to excel on
scientific programs as well.  Simultaneous multithreading is a natural extension of
Alpha's out-of-order implementation.  It is the most powerful mechanism for exploiting
the explicit parallelism in most application workloads.

3. Alpha features

Out-of-order execution

Out-of-order execution is a combination of three techniques:

•  Dynamic scheduling. The processor can reorder instructions to reduce processor
stalls.

•  Register renaming.  The processor can rename registers to remove write-after-read
and write-after-write hazards.

•  Branch prediction.  The processor can predict the direction of a branch before the
branch is executed.

The basic organization of a processor is the fetch-execute cycle.  The processor fetches an
instruction from the instruction cache, executes the instruction, updates the register file
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and memory, and retires the instruction.  Pipelined systems overlap these stages for
successive instructions.  Out-of-order systems fetch multiple instructions into a queue (or
instruction window).  The processor can execute the instructions in the window "out-of-
order", but it must retire the instructions and make their results visible in the register file
and memory system in program order.  These concepts are best understood by looking at
some simple examples.

Dynamic scheduling.  Figure 1 presents a straight-line block of 4 instructions, written in
pseudo-code.  Consider executing this block on a 4-issue machine with a 3-cycle load
latency on a cache hit.  On an in-order pipeline, the sequence will take 7 cycles, assuming
cache hits.  On an out-of-order pipeline, the processor will fetch all 4 instructions at once
and notice that the second LOAD is independent of the first ADD.  It will move the
second LOAD up to dual issue with the first, and the sequence will take 4 cycles.

Of course, within a straight-line block of code, the compiler could (and should) schedule
the code, moving the second LOAD above the ADD, and giving the in-order machine the
same performance as the out-of-order.

There are two situations where the compiler and the in-order processor cannot equal the
out-of-order processor.  The first is dealing with operations of variable latency.  In the
example above, assume each of the LOADs occasionally misses the cache and goes to
memory, resulting in a latency of 100 cycles or more.  The out-of-order machine will
delay the ADD that is dependent on the load, but it will continue fetching and executing
instructions that are not dependent on the LOAD.  The in-order machine will stall at the
ADD instruction, and will not execute any further instructions until the LOAD completes,
resulting in a 100-cycle stall for the processor.

A second situation is dealing with memory aliasing.  If there was a STORE between the
first ADD and the second LOAD, and the compiler cannot prove that the LOAD always
refers to a distinct location from the STORE, then the compiler cannot move the LOAD
above the STORE.  In an out-of-order machine, the processor will know the addresses of
the LOAD and the STORE, and determine if it is safe for them to issue out-of-order.

    in-order           out-of-order
  t1 = LOAD a0        0: t1 = LOAD a0     0: t1 = LOAD a0
  t2 = ADD t1,1       1:                     t3 = LOAD a1
  t3 = LOAD a1        2:                  1:
  t4 = ADD t3,1       3: t2 = ADD t1,1    2:
                         t3 = LOAD a1     3: t2 = ADD t1,1
                      4:                     t4 = ADD t3,1
                      5:
                      6: t4 = ADD t3,1

Figure 1: Dynamic scheduling.
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IA64 has introduced architectural support for speculative execution to address the
problems of variable latency and memory aliasing in an in-order processor.  However,
this support is not as powerful a solution as dynamic scheduling.

Register renaming.  Figure 2 presents a similar straight-line block of 4 instructions.  Note
that the second LOAD reuses the same register as the first.  A compile-time scheduler for
an in-order processor cannot move the second LOAD above the preceding ADD, because
the second LOAD would overwrite the input of the ADD.  This is called a write-after-
read hazard.  In the out-of-order processor, the architectural registers are mapped into a
larger physical register file, and the result of each instruction is written to a distinct
physical register.  This removes all write-after-read and write-after-write hazards, and
permits the processor to move the second LOAD above the ADD.

Of course, within a straight-line block of code, the compiler could (and should) rename
the architectural registers to permit the scheduler to reorder the instructions.  This can
typically be done unless the compiler has run out of architectural registers to allocate, or
if there are some required bindings of the registers. For example, at a procedure call, the
calling standard requires the use of some specific registers.

IA64 has introduced a large number of registers to permit the compiler to do aggressive
renaming.  However, this register real estate can be more effectively used to hold a large
physical register file for an out-of-order processor.

Branch prediction.  Figure 3 presents a two-block sequence of code, where we load and
add a value, and then branch to L1.  Assume the branch is predicted correctly.  On an in-
order machine, this sequence takes 9 cycles.  Even though the branch is predicted
correctly, the in-order processor cannot issue the instructions after the branch until the
branch is issued.  On an out-of-order machine, the correct branch prediction permits the
processor to examine all 5 instructions at once, and dynamically schedule the second
LOAD and ADD before the branch.

                           in-order                out-of-order
      t1 = LOAD a0      0: t1 = LOAD a0         0: p1 = LOAD a0
      t2 = ADD t1,1     1:                         p3 = LOAD a1
      t1 = LOAD a1      2:                      1:
      t1 = ADD t1,1     3: t2 = ADD t1,1        2:
                           t1 = LOAD a1         3: p2 = ADD p1,1
                        4:                         p4 = ADD p3,1
                        5:
                        6: t1 = ADD t3,1

Figure 2: Register renaming.
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A compiler technique called trace scheduling permits the compiler to schedule all of the
instructions along an execution trace as a single basic block.  This would enable the
compiler to schedule the second LOAD and ADD in parallel with the first.  However, to
perform this code motion profitably, the compiler needs to be able to predict the branch
correctly at compile-time.  Without any additional knowledge of the program behavior,
the compiler will be wrong 50% of the time.  Even with run-time feedback, the compiler
will at best be correct 85% of the time.  Good hardware branch predictors, which are used
by an out-of-order machine, are correct 95-98% of the time.  The compiler’s prediction
will be wrong 3-10 times as often as the out-of-order processor, and the performance of
the in-order machine will not be able to equal the out-of-order processor.

If a compiler moves a load above a conditional branch, it must be careful not to introduce
an unwarranted exception, for the load will now be executed when the program did not
intend it to be.  IA64 has introduced some architectural features to address this problem.
However, using this feature will also increase the code size of the program.

Predicting through a function call.  Figure 4 presents a 3-block sequence of code, where
the first two blocks lead up to a function call.  Assume the branch is predicted correctly.
In the in-order machine, this requires 11 cycles.  In the out-of-order machine, the correct
branch prediction will permit the processor to see the instructions on both sides of the
function call, and the processor can complete execution of the body of the function before
the BSR instruction is executed!

                     in-order                out-of-order
      t1 = LOAD a0      0: t1 = LOAD a0         0: p1 = LOAD a0
      t1 = ADD t1,1     1:                         p3 = LOAD a1
      BEQ t1, L1        2:                      1:
                        3: t1 = ADD t1, 1       2:
      L1:               4: BEQ t1, L1           3: p2 = ADD p1,1
      t1 = LOAD a1      5: t1 = LOAD a1            p4 = ADD p3,1
      t1 = ADD  t1,1    6:                      4: BEQ p2, L1
                        7:
                        8: t1 = ADD t3,1

Figure 3:  Branch prediction
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Of course, in a simple example like this, the compiler could simply in-line the call itself,
giving the in-order machine the same performance.  However, inlining is often not a
practical optimization, because the called routine is too large or the routine body is not
available to the compiler.

In summary, the Alpha out-of-order design has several advantages over the IA64 in-order
design.  Alpha can adapt to memory references that occasionally miss in the cache,
avoiding delays of 100 cycles or more.  Alpha can find parallelism when the architectural
registers do not express it. And Alpha can find parallelism across branches and across
function calls dynamically, at run-time.

IA64 depends on compile-time predictions to obtain static instruction-level parallelism.
IA64 relies on the compiler to predict which loads will miss the cache, how memory
operations alias with each other, and the direction of each branch.  If the compile-time
predictions are correct, both IA64 and Alpha will perform well.  But when the compiler is
wrong, the out-of-order Alpha processor can adapt and continue to perform well.  The in-
order IA64 will run slowly.

Simultaneous Multithreading

Computer systems exploit two forms of parallelism: thread-level parallelism (TLP) and
instruction-level parallelism (ILP).  Thread-level parallelism enables a multiprocessor
system to run multiple threads from an application, or multiple independent programs, at
the same time.  Instruction-level parallelism enables a superscalar processor to issue
multiple instructions in the same cycle.  Simultaneous multithreading (SMT) is a new
technology that permits a processor to exploit both TLP and ILP.  Multiple threads can
run on an SMT processor, and the processor will dynamically allocate resources between
threads, enabling a processor to adapt to the varying requirements of the workload.  Most

                        in-order                out-of-order
      t1 = LOAD a0      0: t1 = LOAD a0         0: p1 = LOAD a0
      t1 = ADD t1,1     1:                         p3 = LOAD a1
      BEQ t1, L1        2:                      1:
                        3: t1 = ADD t1, 1       2:
      L1:               4: BEQ t1, L1           3: p2 = ADD p1,1
      BSR foo           5: BSR foo                 p4 = ADD p3,
                        6: t1 = LOAD a1         4: BEQ p2, L1
      foo:              7:                      5: BSR foo
      t1 = LOAD a1      8:                      6: ret
      t1 = ADD t1,1     9: t1 = ADD t3,1
      ret              10: ret

Figure 4:  Predicting through a function call
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server applications are divided into multiple threads, and SMT permits these applications
to take full advantage of the multiple execution units on the processor.

The unique advantage of an SMT processor is that it can use thread level-parallelism and
instruction-level parallelism interchangeably. Multiple threads can run in parallel in the
parallel portion of an application; in the sequential portions, all of the processor resources
can be applied to a single thread.  Amdahl’s law says that the performance of a parallel
application is limited by the amount of time spent in the sequential portion; improving the
performance of a parallel application requires speedups in both the parallel and sequential
portions.  An SMT processor can effectively deliver this speedup.

The opportunity.  Alpha’s out-of-order execution and IA64’s explicitly parallel instruction
computing both find parallelism at the instruction level.  They are both techniques for
issuing multiple instructions per cycle from a single thread.  The amount of potential
instruction-level parallelism is dependent on the program and varies greatly from
application to application.

Figure 5 presents a simple example with a large amount of instruction-level parallelism.
Assume we need to do 4 instructions of work for each element in array a, that the array is
in the data cache, and that a load takes 3 cycles to return its value on a cache hit.  On a
dual issue machine, we can load a future element of an array while we work on the
current one and utilize the functional units effectively.  On a quad issue machine, we can
load two future elements while working on two current elements, and continue to use the
machine very effectively.

for (i = 0; i < n; i++)
        work on a[i]

        dual issue

       ALU0        ALU1
  0: LOAD a[i+1]      .
  1: work a[i]      work a[i]
  2: work a[i]      work a[i]
  3: LOAD a[i+2]      .
  4: work a[i+1]    work a[i+1]
  5: work a[i+1]    work a[i+1]

        quad issue

       ALU0        ALU1              ALU2           ALU3
  0: LOAD a[i+2]      .              LOAD a[i+3]      .
  1: work a[i]      work a[i]        work a[i+1]    work a[i+1]
  2: work a[i]      work a[i]        work a[i+1]    work a[i+1]
  3: LOAD a[i+4]      .              LOAD a[i+5]      .
  4: work a[i+2]    work a[i+2]      work a[i+3]    work a[i+3]
  5: work a[i+2]    work a[i+2]      work a[i+3]    work a[i+3]

Figure 5:  An array problem.
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Figure 6 presents a similar example with limited instruction-level parallelism.  We have
changed the data structure from an array to a linked list.  On a dual issue machine, we can
load the next element of the list while we work on the current one and utilize the
functional units effectively.  However, on a quad issue machine, we can find no
additional parallelism.  We can only process one list element every three cycles, even if
we can parallelize the work on an element.  We cannot load future elements of the list
until we have loaded the current one.  This limitation is fundamental to the example, and
we cannot find more instruction-level parallelism without rewriting the program.
However, with simultaneous multithreading, we can use the unutilized functional units to
run a second program, or another thread from the same program.

Scientific applications typically use arrays as data structures and they have a large amount
of instruction-level parallelism. Out-of-order issue and explicitly parallel instruction
computing will both perform well.  Commercial applications typically use lists as data
structures, and they have much less instruction-level parallelism; often they average less
than one instruction per cycle. Only a technique that exploits thread-level parallelism,
such as simultaneous multithreading, can fully utilize the functional units of the
processor.

Simultaneous multithreading.  Simultaneous multithreading works by turning thread-level
parallelism into instruction-level parallelism.

  while( a != 0)
      work on node a
      a = a->next

        dual issue

       ALU0        ALU1
  0: an = LOAD a->next   .
  1: work a         work a
  2: work a         work a
  3: a = LOAD an->next   .
  4: work an       work an
  5: work an       work an

        quad issue

       ALU0           ALU1           ALU2           ALU3
  0: an = LOAD a->next  .             .               .
  1: work a          work a          work a         work a
  2:    .               .             .               .
  3: a = LOAD an->next  .             .               .
  4: work an        work an          work an        work an
  5:    .               .             .               .

Figure 6:  A list problem.
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An Alpha out-of-order processor has an in-order instruction fetch mechanism and an out-
of-order execution mechanism.  Instructions are fetched in the order that they appear in
the program, and they are executed in an order determined by the data dependencies
between the instructions.  Between the fetch and execute portions of the machine is an
issue queue.  Instructions wait in the queue until they are ready to issue.  See Figure 7.

SMT is implemented by enabling the fetch unit to fetch from a different thread every
cycle.  The fetched instructions have their registers renamed into a large physical register
file, and then they are placed in the queue.  Due to the register renaming, instructions
from multiple threads can be mixed in the queue.  The logic that determines whether an
instruction is ready to issue only examines physical registers, and it can select instructions
from different threads in the same cycle.  In fact, it is very likely that instructions from
different threads will issue in the same cycle, for they will reference different physical
registers.

There is some minor bookkeeping required to keep track of the threads, but the SMT can
be implemented without any major changes to the processor pipeline, without an increase
in the cycle time of the processor, and without a significant increase in the size of the
chip.

The processor dynamically adapts to the requirements of the threads with the instruction
fetch policy.  On a given cycle, we will fetch instructions from the thread that has fewest
instructions in-flight (i.e., instructions that have been fetched but not retired).  This
prevents a single thread from filling the instruction queue, and makes sure multiple
threads are executing at the same time, increasing the thread-level parallelism.  It also
enables the thread with the most instruction-level parallelism at this time to use the
machine effectively.

   [In-order fetch]  [Queue] [Out-or-order execution]  [In-order retire]

Figure 7:  Alpha out-of-order pipeline
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Alternatives.  SMT can deliver more performance than a conventional multiprocessor.
Consider a multithreaded version of the list program presented in Figure 8.  On two 8-
issue processors arranged in a multiprocessor systems, we will be able to process two list
elements every 3 cycles.  On a single 8-issue SMT processor, with the capability of
running 4 threads, we are able to process 4 list elements every 3 cycles.  With half the
number of functional units, we can double the performance.  This is because the SMT
machine can run more threads than the multiprocessor, and at the same time, offer each
thread sufficient instruction-level parallelism.

4. IA64 features

IA64 basics

The IA64 architecture introduces 64 bit addressing and a new instruction set.  It also
contains an IA32 mode; all IA64 processors will be able to execute IA32 programs,
though with disappointing performance.  IA64 is a load/store architecture; memory can
only be referenced by explicit load and store instructions.  All other instructions operate
on registers.  There are five register files: 128 64-bit integer registers, 128 82-bit floating

  for each thread do
      a = todo[tid]
      while( a != 0)
          work on node a
          a = a->next

                               Multiprocessor
           processor 1                           processor 2
     ALU0  ALU1  ALU2  ALU3  ALU4 5 6  7       ALU0  ALU1  ALU2  ALU3 ALU4 5 6 7
  0: LDan    .     .     .     .  . .  .       LDan    .     .     .    .  . . .
  1: Wa     Wa     Wa    Wa    .  . .  .       Wa     Wa     Wa    Wa   .  . . .
  2:  .      .     .     .     .  . .  .        .      .     .     .    .  . . .
  3: LDa     .     .     .     .  . .  .       LDa     .     .     .    .  . . .
  4: Wan   Wan    Wan    Wan   .  . .  .       Wan   Wan    Wan    Wan  .  . . .
  5:  .      .     .     .                      .      .     .     .    .  . . .

            Simultaneous multithreaded processor
     ALU0   ALU1   ALU2   ALU3   ALU4  ALU5  ALU6  ALU7
  0: LDan0  LDan1  LDan2  LDan3   .     .     .     .
  1: Wa0    Wa0    Wa0    Wa0    Wa1   Wa1   Wa1   Wa1
  2: Wa2    Wa2    Wa2    Wa2    Wa3   Wa3   Wa3   Wa3
  3: LDa0   LDan1  LDan2  LDan3   .     .     .     .
  4: Wan0   Wan0   Wan0   Wan0   Wan1  Wan1  Wan1  Wan1
  5: Wan2   Wan2   Wan2   Wan2   Wan3  Wan3  Wan3  Wan3

Figure 8:  A multi-threaded list problem.
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register files, 64 1-bit predicate registers, 8 branch registers, and 128 special purpose
application registers. Each instruction typically has 2 register inputs, 1 predicate input,
and 1 output.  The instructions are gathered into 3 instruction bundles; the bundles are a
mechanism for expressing parallelism between instructions.  There is explicit
architectural support for speculative execution, predication, function calls, and software
pipelining.  We will consider these features in detail below.

Instruction format

IA64 instructions are big.  3 instructions are packed into a 128-bit bundle; each
instruction is 41 bits, with a 5-bit template field to describe the dependencies in the
bundle.  See Figure 9.

The larger instruction encoding is due to:

•  Larger register files. A 128-entry register file requires a 7-bit identifier to select a
register.  2 inputs specifiers and one output specifier require 21 bits in the instruction.

•  Predication.  Each instruction requires 6-bit predicate specifier, to select a predicate
from a 64-entry predicate register file.

•  Explicit parallelism.  5 bits in each bundle are devoted to describing the dependencies
within a bundle, or between bundles. The architecture permits the compiler to group
multiple bundles together, and indicate that all of the operations are data independent.
The template bits indicate where a block of independent operations ends.

Comparing the instruction encodings with Alpha, we see that IA64 instructions are 33%
larger, based on their encoding alone.  An Alpha instruction is 32 bits, and three
instructions can be encoded in 96 bits.  The corresponding IA64 bundle is 128 bits.  Also,
IA64 instructions can only be expressed in bundles of 3, and not all combinations of
instructions are allowed.  Some padding of bundles with no-ops is required.  In addition,
all the compiler techniques required for IA64 will increase code size.

For important server applications such as on-line transaction processing, code size has a
first order effect on performance, and IA64 will be at a competitive disadvantage.

            127       …         87   86        …       46  45         …        5   4    …  0
           [  instruction slot 2  |  instruction slot 1 |  instruction slot 0 | template ]
                      41b                           41b                          41b                 5b

Figure 9:  IA64 instruction format
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The instruction encoding permits VLIW-style parallelism.  For example, Figure 10 shows
the code for a simple loop that adds a constant to a vector, with the loop unrolled by 2.
Each line in the figure is bundle of 3 instructions.  The double semicolon indicates the
end of a group of independent instructions.  Note that almost half of the instructions are
NOPs due to restrictions on the placement of instructions in bundles.  For example, only
one floating-point instruction can occur in a bundle.

Unlike traditional VLIWs, IA64 is fully scoreboarded.  Bundles can be chained together
to indicate a sequence of data independent operations.  However, the machine must check
for dependencies between these sequences.  This removes much of the simplicity of the
traditional VLIW.  In addition, IA64 must deal with the variable latency of loads.

The ability to chain together bundles also permits the compiler to present an arbitrary
amount of parallelism to the hardware.  This appears to remove one of the main
weaknesses of a VLIW: that the code must be compiled for a specific width of machine.
However, it is clear for best performance, the compiler must target a specific machine.
For example, consider the simple loop in Figure 10.  On a processor with two memory
units, a software-pipelined schedule can be written which maximizes the use of these
units.  But on a processor with 3 memory units, the loop would need to be further
unrolled; the current loop requires 4 memory references and a software pipelined
schedule could only utilize the memory units 67% of the time.  The statically scheduled
IA64 model cannot dynamically adjust to utilize the machine resources efficiently.

Large register files

IA64 has large register files: 128 integer registers and 128 floating point registers.
Registers have two uses: to store data that is used multiple times for fast retrieval and to
express the parallelism in the program.

Large register files have a proven benefit in scientific programs; for example, in blocked
matrix solvers they can be used to hold a sub-array that is repeatedly referenced.
However for general integer programs and commercial servers, where data is less
regularly structured and typically accessed indirectly through pointers, it is more difficult
to use a large register file effectively to hold commonly used data; in these applications
the extra code space required to specify the register offsets the minor gains in using the
register file to store data.

    L1: LDFD f4 = [r5],8   LDFD f14 = [r15],8    NOP ;;

        NOP                FADD f7 = f4, f9      NOP
        NOP                FADD f17 = f14, f9    NOP ;;

        STFD [r6] = f7,8   STFD [r16] = f17,8   BR.cloop L1

Figure 10:  A simple vector loop.
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A processor with simultaneous multithreading presents the compiler with a full
architectural register file for each thread.  It permits the programmer to use a large
number of registers to hold data without increasing the instruction size.

Registers are also required to express parallelism.  Every operation that produces a value
requires a register specifier; in effect, it is the name of the value.  For example, to issue 8
operations per cycle requires 8 destination registers.  If, on average, the result is read
10 cycle later, 80 registers are required to express the computation. On an in-order
machine such as IA64, architectural registers are required to express this parallelism.
This is one of the reasons IA64 has introduced larger register files and paid the price of
large instructions.  On an out-of-order machine, the architectural registers are mapped
into a much larger physical register file.  Physical registers can be used to express the
parallelism discovered by the dynamic scheduler; the architectural register file and the
instruction encoding do not need to grow.

Predication

Almost all IA64 instructions require a predicate register as an additional input.  The
instruction is executed only if the predicate is true.  To support predication IA64 includes
a powerful compare instruction to produce predicates, see Figure 11.  The compare
instruction compares r1 and r2, using a comparison given by crel (e.g., greater than).  In a
typical case, the result of the comparison is written to p1 and its complement to p2.  This
gives two predicates to control the two sides of an if-then-else statement.  A number of
other results are possible; this is controlled by the ctype qualifier.

Predication permits the compiler to remove a branch.  It is a generalization of the Alpha
conditional move instruction (CMOV); in IA64 terminology, CMOV would be called a
predicated move.  Figure 12 shows three ways to compute if (a) x = t+1.

(qp)  CMP.crel.ctype p1,p2=r2,r3

Figure 11:  IA64 compare instruction

        Alpha               IA64                  Alpha
        BNE a,.+2           CMP.EQ p1,p2 = a,0    ADD t,1,x0
        ADD t,1,x       (p1)ADD x = 1,t           CMOV a,x0,x
        (1)                 (2)                   (3)

Figure 12:  Three ways to compute if (a) x=t+1
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In (1) we use a branch; in (2), the IA64 predication; and in (3) the Alpha CMOV
instruction.  For many common cases such as this one, the more general IA64 predication
does not improve the code.

Predication turns a control dependence into a data dependence.  In (1) above, the ADD
instruction is not dependent on the branch.  In an out-of-order processor, when the branch
is predicted correctly, the ADD may issue before the branch.  In the predicated IA64
version, the ADD must wait for the comparison.  In many programs, particularly large
commercial applications, the computation of the branch conditions are the critical path of
the computation.  Run-time branch prediction is extraordinarily effective; 95-98% of
branches are predicted correctly.  On an out-of-order machine, instructions can be issued
before the branch that controls them resolves.  In an in-order machine, predicated
instructions must wait until their predicate is evaluated.  This increases the critical path
length through the program.

Predication increases the instruction cache footprint of programs as well. It requires the
predicated instructions from both sides of an if-then-else to be present in the instruction
cache in order to execute either the then clause or the else clause.  For tight inner loops,
predication may be a reasonable decision, but for large loop-free programs such as
databases or operating systems, requiring both sides of an if-then-else clause to be cache
resident to execute only one of them will increase the instruction cache footprint and
lower performance.  Also, every IA64 instruction is larger in order to contain the
predicate specifier.  All code has a larger instruction cache footprint to support the
feature, even large loop-free server applications where it cannot be profitably applied.

Predication also prevents the full utilization of the functional units in the processor.  If
both sides of an if-then-else are scheduled in the same straight-line code, only half of the
functional units are effectively used; the results of the functional units with a false
predicate are discarded.  On a single-threaded processor such as IA64, this may seem like
a reasonable decision.  However, on simultaneous multithreaded processor, these
functional units are a valuable resource that can be used by another thread.  Predication
must be used judiciously, which Alpha can do with CMOV.

Predication cannot remove branches when they are function calls. Figure 13 shows an
excerpt from the 022.li benchmark from SPECint95. The static probability of each branch
is reported; there are two probabilities on two lines, because the C && operator is an
implied branch.  This decision pattern is found in many commercial applications.  All of
the branches are highly biased, except for one, which decides whether to call evform or
xlgetvalue.  However, predication cannot be effectively applied to the 32% branch,
because a transfer of control to one of the called functions is required.  Note that this
routine is an excellent candidate for an out-of-order processor, because all of the branches
(including the 32% branch) can be effectively predicted by a run-time predictor, and
processor can overlap the execution of either evform or xlgetvalue with the evaluation of
the branch conditions in xleval.
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Extensive predication makes it impractical to implement an out-of-order version of IA64.
In the example in Figure 14, the ADD in line [d] reads either the value of x created by the
MOV instruction in line [b] or the value created by the predicated ADD instruction in line
[c].

In an out-of-order processor, each instruction that writes a result is assigned a new
physical register.  In Figure 14, assume the MOV in line b writes physical register xv1
and the ADD in line c writes physical register xv2.  The ADD in line d will read physical
register xv2, independent of the value of the predicate p1.  For the predicated instruction
to work correctly in an out-of-order processor, the instruction must either write a new
value to this physical register, or pass along the old value.  In essence, the predicated
instruction must behave like the C select operation.

        xv2 = p1 ? add 1,t : xv1

This requirement adds an additional input to all of the potentially predicated instructions.
It will increase the size of the front-end of the processor pipeline by 50%.

Control speculation

NODE *xleval(NODE *expr) {

        if (--xlsample <= 0) ...               /* 1% */

        if (*++xltrace < TDEPTH)               /* 100% */
            trace_stack[xltrace]=expr;

        if (expr && expr->n_type==LIST)        /* 99.9%, 32.0% */
            expr = evform(expr);
        else if (expr && expr->n_type==SYM)    /* 99.9%, 99.9% */
            expr = xlgetvalue(expr);

        --xltrace;

        return(expr);
    }

Figure 13:  Xleval routine from 022.li in SPECint95, annotated with static branch probabilities.

              CMP.EQ p1,p2 = a,0     [a]
              MOV x = 1              [b]
         (p1) ADD x = 1,t            [c]
              ADD y = x,1            [d]

Figure 14:  Predication makes it impractical to implement out-of-order IA64
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Control speculation refers to the compiler moving instructions above a branch.  This
permits long latency operations such as cache-missing loads to begin earlier in the
program.  Consider the possible translations of if (a) x = *b + 1 given in Figure 15.
Column 1 presents a straightforward translation of the statement.  The other columns
present versions of the code where the LDL is moved above the branch.

Note that when an instruction is moved above a branch, it may now be executed when it
should not be.  In the original program, the instruction would only be executed when
control reached the block containing the instruction, its home block.  The transformed
program should continue to execute as if the instruction was still in its home block, but
with the performance advantage of issuing the instruction earlier.

The compiler must be careful about the side effects the instruction has on registers,
memory, and exceptions.  For registers, the compiler can simply ignore the written
register if the program branches away from the home block of the load.  Memory side
effects can be avoided by not speculating stores.  Avoiding exceptions requires more
support. Consider, in Figure 15, if both a and b are zero.  If we move the load above the
branch, we will get a memory exception for dereferencing location zero; if we do not
move the load, we will branch around it.

To address this problem, IA64 has introduced two new instructions: a speculative load
and a speculation check.  On an exception, the speculative load sets a 65th bit in the result
register and ignores the exception.  The check instruction checks the 65th bit of the
register, and if it is set, signals the exception.  This permits the exception to be deferred
until control reaches the home block of the load, or dismissed if control never reaches this
block.  Column 2 in Figure 15 illustrates the use of the speculative load (indicated by the
.s qualifier) and the speculative check (CHK.s) instructions.

For Alpha, we have implemented a similar system in software [5]. Speculative loads are
identified using a PC-map.  When a speculative load generates an exception, the system
software sets an assigned bit in a reserved exception register and returns; this corresponds
to setting the 65th bit in the result register in the IA64 design.  In the home block, a

    if (a) x=*b+1

    Alpha             IA64               Alpha             Alpha
                      LD4.S t=[b]        LDL t,(b)         LDL r31,(b)
                      ...                ...               ...
                      CMP.EQ p1,p2=a,0   BNE a,.+3         BNE a,.+2
    BNE a,.+2    (p2) BR .+2             CMP ER,EXC,t0     LDL t,*b
    LDL t,(b)         CHK.s t            BNE t0, fixup     ADD t,1,x
    ADD t,1,x         ADD x=1,t          ADD t,1,x

    (1)               (2)                (3)               (4)

Figure 15:  Possible translations of if (a) = *b+1
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traditional compare instruction checks if the bit corresponding to this speculative load is
set in the exception register and branches to a handler if necessary.  Column 3 in Figure
15 illustrates the use of this scheme.

We have done extensive experimentation with software-directed control speculation.  We
have discovered that an out-of-order processor with a large instruction window can find
most of the instruction-level parallelism in the program if all memory references are
cache hits; the problem is cache misses.  An attractive solution to improving instruction-
level parallelism in programs is to use prefetching.  We can ensure a reference is a cache
hit by prefetching it.  A prefetch cannot generate an exception, so there is no need for a
checking instruction in the home block.  In addition, a prefetch will fetch a 64-byte cache
line; multiple prefetches to the same cache line can be merged into a single instruction.
And a prefetch does not require a register to hold a result; register pressure is reduced.  In
summary, prefetching on an out-of-order processor provides all of the benefits of control
speculation with fewer instructions, and thus a smaller instruction cache footprint.
Prefetching directly attacks memory latency, which is one of the major limits to high
instruction-level parallelism.

Compilation techniques for exploiting control speculation require code duplication.
Superblocks (or hyperblocks) must be built to create straight-line paths through the code
[7,8].  Figure 16 shows a simple flow graph where each Bn represents a basic block, and
the edges are possible control flow between the blocks.  Assume the frequently traveled
path through the graph is B0-B1-B3-B5-B6.  To isolate this path for control speculation,
the superblock algorithm will create copies of blocks B3, B5, and B6.  If all blocks are the
same size, this is a 30% increase in code size.  This increase is on top of the 33% code
size increase due to the IA64 instruction encoding.  IA64 will not be competitive on
commercial applications, where code size has a first order effect on performance.

                B0                  B0
               /  \                 | \
              B1  B2                B1  -B2
               \  /                 |     |
                B3                  B3   B3
               /  \                 | \ /  \
              B4  B5                B5 B4   B5
               \  /                 |   \  /
                B6                  B6   B6

              flow graph           superblock

Figure 16:  Forming superblock for hot path B0-B1-B3-B5-B6.
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Data speculation

Data speculation refers to the compiler moving a load above a possibly conflicting store.
Often in programs with pointers, distinct pointer references rarely point to the same
memory location, but the compiler cannot prove this.  The IA64 provides some
architectural support to permit a load to move above a store, and then, after the store
occurs, check if the two pointers overlapped.

Figure 17 illustrates the problem.  To improve the performance of the program, we would
like to schedule the potential cache-missing load of *q above the store to *p.  IA64
introduces two new instructions to do this: an advanced load and a checking load; we can
see their use in column 2.  The advanced load (indicated by the .a qualifier) will both
perform a load and create an entry in an advanced load table (ALAT). Every store in an
IA64 will check its address with the ALAT and clear any matching entry.  The checking
load (indicated by the .c qualifier) will check the ALAT.  If the entry for the matching
advanced load remains in the table, then no intervening store to the same address has
occurred, and the checking load is performed.  If the entry for the matching advanced load
has been removed from the table, the store to the same address may have occurred, and
the checking load reissues the load. The same effect can be created on Alpha by explicitly
checking if the two pointers are equal; see column 3 on Figure c.  If the two pointers are
aligned, then we do not need to replay the load, but can move the value of the store to the
destination register of the load.

We invented a similar address-checking technique when Alpha was first designed [1].
However, we determined that this problem is best solved by the processor.  At run-time,
we know the pointer values and can track when conflicts occur and how they vary over
time.  A run-time predictor [9] can accurately predict which loads and stores conflict; it
permits the processor to freely reorder the references that are unlikely to conflict.  We can
achieve better performance than IA64, because our run-time predictor enables us to
determine more accurately when it is profitable to move a load above a store.  And we

       *p = x
        y = *q

        Alpha           IA64            Alpha           Alpha

                        LD8.a y=[q]     LDQ y,(q)       LDL r31,(q)
                        ...             ...             ...
        STQ x, (p)      ST8 [p]=x       STQ x,(p)       STQ x,(p)
        LDQ y, (q)      LD8.c y=[q]     CMPEQ x,y,t     LDQ y,(q)
                                        CMOVNE t,x,y

        (1)             (2)             (3)             (4)

Figure 17:  Possible translations of a store to *p followed by a load from *q.
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will not require any extra checking instructions, so our instruction cache footprint will be
smaller.

In cases where the load from *q frequently misses the cache, it will be beneficial to add a
prefetch instruction, as shown in column 4, Figure 17.

Function calls

IA64 has added register windows, similar to those in the SPARC architecture, to support
function calls.  The 128-entry general-purpose register file is partitioned into a 32 entry
global file and a 96 entry stacked file.  On entry to a procedure, an ALLOC instruction is
executed that creates a new register stack frame of up to 96 entries; on return, the caller’s
register stack frame is restored.  It appears to the compiler that there is an unlimited stack
of physical registers.  Of course, there is a bounded number of physical registers on the
processor, and they are written out to memory as necessary by a register stack engine
(RSE), without explicit program intervention.

It is ironic that in an architecture designed to give compiler control of the processor, the
compiler is not given control of saving and restoring registers.  This is one area where
compiler technology has a proven record of success [10].  Only a handful of registers
need to be saved and restored across a procedure call, and the saves and restores can
typically be placed at locations where they do not conflict with the other computation.
On an IA64, the register save engine may be triggered at any time.  Also note it will save
all registers, not simply those that are live across a function call; much of the saving and
restoring done by the register save engine will be unnecessary.

To make effective use of the register stack, an IA64 implementation will need to have a
large on-chip physical register file that can hold multiple register frames.  The register file
is one of the most valuable resources on the chip; it must be carefully designed to deliver
fast, multi-ported access.  However, on an IA64, most of the physical register file will sit
idle, since only one window on the register file can be open.  In effect, the register file is a
staging buffer for saving and restoring registers to memory.  Contrast this with a multi-
threaded, out-of-order machine, where all the physical registers are available to the
current computation, and the very expensive structure is usually fully utilized.

Software pipelining

 IA64 has added significant architectural support for software pipelining.  IA64 has
introduced rotating register files and implicit predication to minimize the code size in a
software-pipelined loop.  This is best understood by looking at an example. In Figure 18
we present simple loop to add a constant to a vector.
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Figure 18, part 2, indicates how a single iteration of the loop would execute on a simple
machine with 3 cycle cache-hit latency and a 3 cycle floating latency, assuming the arrays
are in the data cache.  If we assume this machine can issue a load, a store, and a floating-
point operation in a cycle, we would like to execute an iteration of this loop every cycle.
To avoid register conflicts, this requires a three-cycle kernel, as shown in part 3.  To
simplify the exposition, we do not show any loop control or address arithmetic, and we
use the Alpha instruction set.  The three-cycle kernel is the body of a loop, and it will
iterate until the loop is complete.  Note that the LDT f0, 0(r16) in the first cycle is
consumed by the ADD f0, f30, f16 in the next iteration of the loop.

This kernel runs the simple machine at peak rate, but we need to be able to enter it and
exit it.  We create a prolog to initiate all the computations that must be in-flight to enter
the kernel at the top, and we create an epilog to complete the computations in flight when
we finally exit the kernel at the bottom.

Note that the code has increased in size 9 times from the simple LDT/ADDT/STT that is
the basic body of the loop.
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   1. simple loop

     DO i = 1,n
        A(i) = T+B(i)

   2. basic loop schedule
                                cycle
        LDT   f0, 0(r16)         0
        .                        1
        .                        2
        ADDT  f0, f30, f16       3
        .                        4
        .                        5
        STT   f16, 0(r17)        6

   3. software pipelined kernel

        STT  f16, 0(r17)        ADDT  f0,f30,f16        LDT  f0, 0(r16)
        STT  f17, 8(r17)        ADDT  f1,f30,f17        LDT  f1, 8(r16)
        STT  f18,16(r17)        ADDT  f2,f30,f18        LDT  f2,16(r16)

   4. loop with prolog and epilog
       prolog
                                                        LDT  f0, 0(r16)
                                                        LDT  f1, 8(r16)
                                                        LDT  f2,16(r16)

                                ADDT  f0,f30,f16        LDT  f0, 0(r16)
                                ADDT  f1,f30,f17        LDT  f1, 8(r16)
                                ADDT  f2,f30,f18        LDT  f2,16(r16)

       kernel

        STT  f16, 0(r17)        ADDT  f0,f30,f16        LDT  f0, 0(r16)
        STT  f17, 8(r17)        ADDT  f1,f30,f17        LDT  f1, 8(r16)
        STT  f18,16(r17)        ADDT  f2,f30,f18        LDT  f2,16(r16)

       epilog
                                STT  f16, 0(r17)        ADDT  f0,f30,f16
                                STT  f17, 8(r17)        ADDT  f1,f30,f17
                                STT  f18,16(r17)        ADDT  f2,f30,f18

                                                        STT  f16, 0(r17)
                                                        STT  f17, 8(r17)
                                                        ST  Tf18,16(r17)

Figure 18:  A software-pipelined kernel.
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To address this code growth, IA64 has added two features.  The first is rotating registers.
The kernel of the loop has three copies of the same code, with different register
identifiers.  By rotating the register file each iteration of the loop, so that f32 in the
current iteration will be f35 in three iterations, we can write the kernel in a single copy.
The second feature is rotating predicates.  Note that the prolog and epilog are identical to
the main kernel, except that certain operations are dropped out.  On an IA64, we can
achieve this same effect dynamically with predication.  For example, in the prolog, we
start with the full kernel, but only enable the LDTs, then the LDTs and the ADDTs, and
then finally the entire kernel.  When we are done with the main body of the loop, we enter
the epilog by first turning off the LDTs, then turning off the ADDTs, and finally the
STTs, and we are done.

The code growth savings are considerable.  However, software pipelining is most
applicable to high performance technical computing. These applications are dominated by
high trip-count loops, and even with very large loop unrolling, the instruction cache miss
rate is not significant. IA64 will have smaller code than Alpha for these scientific loops,
but it will not affect performance.

For commercial applications with low trip count loops, software pipelining is not the best
solution.  A low trip count loop will be dynamically unrolled in the instruction window of
an out-of-order processor.  The processor will reorder the code, adjusting to dynamic
events such as cache misses, which are difficult to predict at compile-time.

Instructions

Though most of the IA64 instructions are RISC-style, there are a few notable exceptions.

No displacements.  The basic IA64 addressing mode is a base address contained in a
register.  A surprising weakness is that the base address cannot be modified by a
displacement when calculating a virtual address.  A base-update mode does permit a
displacement to be added to the base register after the virtual address has been computed.
This forces an unattractive tradeoff when accessing multiple fields off of the same base
pointer.  Either a register must be dedicated to computing each field address, or one
addressing register can be used with base-update addressing, which introduces a data
dependency between the accesses.

Figure 19 presents sequences for loading multiple fields from a structure, as may happen
in a large commercial application.  In column 1, the Alpha sequence incorporates the
appropriate offsets from p as displacements in the load instruction and no additional
address arithmetic is required.  Column 2 presents the parallel IA64 code, where two
explicit ADD4 instructions are required to compute the addresses of the fields before
loading them.  Column 3 presents the sequential IA64 code, where the second LD8 is
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dependent on the first LD8, and must issue in the following cycle.  The IA64 code is 33-
66% larger than the Alpha sequence.  The IA64 architecture is not well suited to the
addressing requirements of commercial applications.

CISC instructions.  The pipeline for a modern RISC processor is optimized for writing
one register per instruction.  IA64 has introduced many instructions where a single
instruction may require more than one register write.  As mentioned above, the base
register in a memory reference can be updated after the memory reference occurs by
adding a register or immediate to the base address.  An IA64 load may write two
registers: the destination register of the load and the base register.  Two register writes
will complicate a pipeline optimized for writing one register per instruction.  It may also
require an additional write port to the register file to handle a worst case that rarely
happens.

To support software pipelining, IA64 has introduced a very complicated branch
instruction.  The loop branch instruction reads and writes 3 special application registers
(the rotating register base, the loop counter and the epilog counter), writes predicate
register 63, and updates the PC.  Implementing this instruction will complicate a pipeline
optimized for writing one register per instruction.  It is also tailored to a very specific
style of software pipelining and cannot be used by compilers that support a different
model.

4. Application performance

In developing the Alpha architecture, we focus on the performance of general-purpose
code, on high-performance technical computing, and on commercial server applications.
Of course, application performance is determined by the computer system, not the
microprocessor alone.

new_salary = p->salary + p->increase;

        Alpha                       IA64

        LDQ t0, s(p)       ADD4 a0=p,s            ADD4 a0=p,s
        LDQ t1, i(p)       ADD4 a1=p,i            LD8  t0=[a0],i
        ADDQ t0,t1,ns      LD8  t0=[a0]           LD8  t1=[a0]
                           LD8  t1=[a]            ADD8 ns=t0,t1
                           ADD8 ns=t0,t1

        (1)                (2)                    (3)

Figure 19:  Addressing a structure with displacements.
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To improve system performance, we are incorporating some additional system
functionality on to the processor.

•  Low-latency, high-bandwidth memory interface.  The microprocessor core is
increasing in speed relative to memory.  The major bottleneck in systems performance
is the memory interface. Future Alpha systems will bring the board-level cache and
the memory controller on-chip, to reduce latency to memory and to increase
bandwidth.

•  Distributed shared memory (DSM).  Bus-based multiprocessor systems do not scale
well; in the near future, the memory requests of a single processor will exhaust the
capacity of the system bus.  Future multiprocessor systems will require distributed
shared memory, with local memories for each processor and point-to-point
connections between processors and remote memory.  Future Alpha processors will
directly support this organization with on-chip network interfaces.

General purpose code

Out-of-order execution is the most effective way to improve the performance of general
purpose code.  General purpose codes are those that are not highly parallel and do not put
extraordinary demands on the memory system of the processor; they are exemplified by
the SPEC integer benchmarks.  Out-of-order execution was implemented in a number of
microprocessors in the past 5 years, and we can examine the benefit by examining the
performance improvement in comparing the performance of in-order and out-of-order
implementations of the same instruction set architecture.  We can see that at the same
cycle time, we typically see a performance improvement of 1.5x.

                                     SPECint   speedup
                                     ------    -------
    in-order     Mips R5000  180MHz   4.82
    out-of-order Mips R10000 180MHz   8.59     1.78

    in-order     Pentium    200MHz    5.47
    out-of-order PentiumPro 200MHz    8.09     1.48

    in-order     Alpha 21164 600MHz   19.3
    out-of-order Alpha 21264 575MHz   30.3     1.57

Figure 20:  SPECint comparison of in-order and out-of-order processors at the
same cycle time.
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High Performance Technical Computing

Highly parallel, bandwidth intensive programs characterize high performance technical
computing (HPTC).  There is a large amount of parallelism, both at the instruction-level
and at the thread-level. This applications map well onto a simultaneous multithreaded
processor.

The performance of HPTC applications is typically limited by the memory bandwidth of
the system.  Most large applications require loading one double precision floating point
number from memory for each flop; this is 8 bytes/flop.  The SPECfp95 benchmarks are
smaller versions of HPTC applications.  Performance studies on previous Alpha
implementations have shown SPECfp95 benchmarks spend 50% of their time stalled
waiting on a data cache miss [11].  Essentially no time is spent waiting for an instruction
cache miss.

The next generation Alpha processors will have the fastest memory system in the
industry.  We will be the leaders in HPTC performance.

Server applications

Server applications such as online-transaction processing and web serving are large
multithreaded programs.  They have very small amounts of instruction-level parallelism;
on the most aggressive superscalar machines they typically execute less than one
instruction per cycle.  However, server applications perform well on multiprocessor
platforms, and they are ideally suited for a simultaneous multithreaded processor.

As an example of a server application, we will consider online-transaction processing.
This application has a number of distinctive characteristics:

•  No loops.  Our studies of databases have shown that almost 70% of the run-time is
spent in procedures with loops that iterate less than 2 times on average, and that
nearly all run-time is spent in procedures with loops that iterate less than 16 times
[12].  An insignificant amount of time is spent in procedures containing loops with
high trip counts.

•  Large routines with many branches.  Almost all the run-time in a database is spent in
routines with more than 16 distinct branches, and more than half the time is spent in
routines with more than 128 branches [12].  Even though there are many branches,
they are well suited for a hardware branch predictor.  Our studies have shown that the
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number of mispredicts running TPC-C is less than the average for the SPECint95
benchmarks [11].

•  Large memory footprint.  Transaction processing has a large memory footprint,
exceeding the size of on-chip caches and large board level caches.  For TPC-C, the
overall cache miss rate is three times the average of the SPECint95 benchmarks, and
more than twice the average of the SPECfp95 benchmarks.  The instruction cache
miss rate is four times the average of the SPECint benchmarks, and 10 times the
average of the SPECfp benchmarks.  The board level cache miss rate is 10 times the
average of the SPECint benchmarks, and 1.5 times the average of the SPECfp
benchmarks [11].

On an earlier Alpha system, the processor was stalled 80% of the time running TPC,
while delivering industry-leading performance [11].  To improve performance, we are
designing future Alpha systems to do the following:

Reduce the instruction cache footprint.  The major goal when compiling databases is to
reduce the size of the instruction cache footprint.  Improving code quality to generate
fewer instructions is important.  Code layout techniques that rearrange the instructions in
the application to make the more frequent path sequential will effectively pack each cache
block with useful instructions.  This packing improves performance by up to 30%.

The basic instruction encoding of IA64 increases the code size by 33%.  In addition, the
techniques that IA64 introduces to increase instruction-level-parallelism (speculation and
predication) increase the instruction cache footprint. Speculation requires that additional
check instructions be introduced on the frequent path for each speculative chain of
operations; large amounts of code must be introduced to recover from mis-speculation;
and in addition, large amounts of code must be copied to form superblocks. Predication
requires that both sides of a conditional branch must be in the instruction cache. Alpha’s
out-of-order execution techniques are a much better method for increasing instruction-
level parallelism without increasing the instruction cache footprint.

Also note that the special IA64 instructions introduced for software pipelining loops is
not applicable to transaction processing, for there are no frequently executed loops.

Tolerate cache misses.  With out-of-order execution, an Alpha processor can adapt to a
data cache miss; only the instructions that are dependent on the missing reference are
delayed.  In an in-order processor, all of the instructions after the first instruction
dependent on the missing reference are delayed.

The IA64 strategy for tolerating cache misses is to attempt to guess at compile-time what
references will miss, and to schedule speculative loads to issue the references early.  This
approach has three drawbacks.  First, in-line checks and compensation code are required;



 Alpha and IA64 29  October 11, 1999

the additional instruction cache misses due to these instructions may outweigh any gains
due to issuing the load early.  Additionally, often the address computation of the load is
on the critical path, and the load cannot be scheduled earlier.  And finally, in a program
like transaction processing, with irregular data structures, it is very difficult for the
compiler to predict which reference will miss.  The out-of-order processor, at run-time,
will have this information to guide its dynamic scheduler.

Increase effective pin bandwidth.  To increase the effective pin bandwidth, we are moving
the board level cache on to the chip. The interface between the processor and the board-
level cache is the most frequently traversed interface in today’s systems.  By moving the
cache on to the chip, we can introduce a much higher bandwidth, lower latency interface
between the processor and the cache.  At the same time, we will make the cache highly
associative, effectively removing all conflict misses.

In addition, we are adding a direct RAMbus memory controller on to the processor.
RAMbus offers four times the effective pin bandwidth of a conventional SDRAM
memory system.  Future Alpha systems will have the highest bandwidth, lowest latency
memory systems in the industry.

Merced will not have an on-chip level 2 cache.  Neither Merced nor McKinley will have
an on-chip memory controller [13].

Increase processor-to-processor bandwidth.  The scaling of current systems running
transaction processing is limited by the bandwidth of the system bus.  In particular,
communication of shared data is a bottleneck.  Future Alpha systems will replace the
system bus with many point-to-point connections.  This will remove the system bus as a
bottleneck.

Neither Merced nor McKinley will have an on-chip support for a distributed shared
memory [13].

Simultaneous multithreading.  Transaction processing is an explicitly parallel program
with very low functional unit utilization; detailed simulations [14] have shown that a
speedup of 3x is achievable with simultaneous multithreading.  This remarkable result is
due to two phenomena.  Even though the threads are not running in lock step, they are all
running the same code, and by constructive interference, the effective instruction cache
miss rate of the program is reduced by 30%.  With appropriate support from the operating
system, multithreading introduces very few conflict misses into the data references, and
the latency tolerance inherent in SMT permits the extra data cache misses introduced by
the multiple threads to have a minimal effect on processor performance.  For a processor
with sufficient memory bandwidth, such as the next generation Alpha, simultaneous
multithreading can effectively exploit the parallelism in transaction processing.

IA64 does not include simultaneous multithreading.  Each thread in a transaction-
processing program is very sequential and includes long delays waiting for memory.  The
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IA64 strategy of searching for instruction-level parallelism cannot find the orders of
magnitude improvements available through simultaneous multithreading.

In summary, future Alpha systems will directly address the performance bottlenecks in
transaction processing.  We expect the transaction processing throughput of an Alpha
processor to increase by a factor of 10 from today’s 21264 to an 8-wide 21464 with
simultaneous multithreading: a factor of 2 from improved instruction-level parallelism, a
factor of 2 from thread-level parallelism, and a factor of 2.5 from improvements in
process technology and cycle time.

In contrast, the new technologies Intel has developed for IA64 are a poor fit for the
transaction processing.  Their new instruction set architecture increases the code size of a
program by at least 33%, and the compiler techniques required to increase instruction-
level parallelism introduce additional instructions.  IA64 does not have techniques for
dynamically tolerating cache misses or memory latency.  In fact, the IA64 techniques for
tolerating memory latency create additional instructions, which will increase the
instruction cache miss rate, which, in turn, will increase the memory system delays.
Merced will add no features to increase effective pin bandwidth, and no IA64 processor is
planning to increase processor-to-processor interconnect bandwidth. And most
importantly, IA64 does not include simultaneous multithreading.  IA64 is only focused on
increasing instruction-level parallelism, and IA64 processors have no techniques to
effectively exploit the parallelism in an explicitly parallel program.  Figure 21 highlights
these differences.

                                 Merced   21364   McKinley   21464
    small icache footprint         no      yes      no       yes

    dynamically tolerate           no      yes      no       yes
     cache misses

    increase pin bandwidth
     . on-chip L2 cache            no      yes      yes      yes
     . on-chip memory controller   no      yes      no       yes

    increase processor-to-         no      yes      no       yes
     processor bandwidth

    simultaneous multithreading    no      no       no       yes

Figure 21:  Features for supporting high performance commercial applications.
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5. Conclusion

An Alpha processor will be able to exploit static instruction-level parallelism (discovered
by the compiler at compile-time) and dynamic instruction-level parallelism (discovered
by the processor at run-time).  An IA64 processor will only be able to exploit static
instruction-level parallelism.

An Alpha processor can take advantage of the excellent compiler technology developed
for IA64 and other VLIW processors; much of this technology is already implemented in
the Alpha compilers.  However, the Alpha compilers will be able to use these
optimizations much more judiciously, avoiding excessive code growth, because the Alpha
out-of-order processor can also discover instruction-level parallelism at run-time.

An Alpha processor will be able to adapt to dynamic program behavior at run-time.  An
IA64 processor will not.  An Alpha processor can adapt to memory references that miss in
the cache, avoiding delays of 100 cycles or more.  An IA64 processor will stall.  An
Alpha processor can find instruction-level parallelism when the compiler does not
express it. And an Alpha processor can find instruction-level parallelism at run-time
across branches, function calls, and compilation boundaries.

An Alpha processor will be able to exploit thread-level parallelism.  An IA64 processor
will not.   Most server applications are divided into multiple threads, and simultaneous
multithreading permits these applications to take full advantage of the multiple execution
units on the processor.  An Alpha processor can use thread-level parallelism and
instruction-level parallelism interchangeably, adjusting to the behavior of the application.
Amdahl’s law says that high performance requires speedups in both the sequential and the
explicitly parallel portions of an application; an Alpha processor can deliver these
speedups.

An Alpha processor will deliver the highest memory bandwidth in the industry, and
systems built out of Alpha processors will lead the industry in high performance technical
computing.

An Alpha processor will significantly outperform an IA64 processor on commercial
applications.  Alpha processors have addressed the main requirements of commercial
applications: reducing the instruction cache footprint, tolerating unpredictable cache
misses, increasing the pin bandwidth, and exploiting explicit thread-level parallelism.
IA64 processors are not well designed for commercial applications.  They require a large
instruction cache footprint; they cannot dynamically tolerate cache misses; and they
cannot exploit thread-level parallelism.

In the important server markets, Alpha will outperform IA64.
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