CSCI 7135
Introduction
Amer Diwan

Goals of the class

• A deep and up-to-date understanding of
 – compile-time program analyses
 – run-time program analyses
 and their applications
• Method
 – Read and critique recent and influential papers
 – Implement some ideas
Compile-time program analyses

• Discovers properties of programs by looking at its source
 – Local (a few lines of straight line code)
 – Global or intraprocedural (full procedure)
 – Interprocedural (several procedures)
 • Special case: Whole program analysis

Example of compile-time program analysis

What are possible values of y?
Does this need local, global(intraprocedural), or interprocedural analysis?
Run-time program analyses

- Discovers properties of programs by examining its runs

Example of run-time program analysis

Which is the most common target of o.m()?
Hybrid analyses

- Combines run-time analysis and compile-time analysis
 - May use a compile-time analysis to reduce overhead of run-time analysis
 - May use run-time analysis to guide compile-time analysis to hot-spots

First topic: Data-flow analysis

- A commonly used technique for compile-time analysis
- Readings:
 - Aho, Sethi, and Ullman Sections 10.1 to 10.6; or
 - Muchnick Sections 8.1 to 8.4; or
 - Relevant sections from your favorite compiler text
Outline

• Preliminaries
 – Control flow graphs and basic blocks
• Fundamentals of data flow analysis
• Examples

Basic blocks

• A maximal sequence of instructions s.t.:
 – Only the first statement can be reached from outside the block
 – All the statements are executed consecutively if the first one is
Control flow graphs

• Nodes: basic blocks
• Edges: $B_i \to B_j$ iff B_j can follow B_j immediately in some execution
• It is convenient to insert special entry and exit nodes

```
receive m
f0 := 0
f1 := 1
if m <= 1 goto L3
    i := 2
L1 if i <= m goto L2
    return f2
L2 f2 := f0 + f1
    f0 := f1
    f1 := f2
    i := i + 1
    goto L1
L3 return m
```

CFG and Basic Block Example
Data-flow analysis example: reaching definitions

- What definitions of each variable reach each point of a procedure?

PRS V and GEN sets

- A basic block preserves a property if it does not alter it (i.e., kill it)
- A basic block generates a property if it creates and doesn’t subsequently kill it
- In our example, the property of interest is whether or not a definition reaches a point in the program
Example continued

What definitions reach the end of each block?
Definitions reaching beginning of block that are preserved in the block

+ Definitions generated and not subsequently killed by the block
\[RCH_{\text{out}}(i) = GEN(i) \cup (RCH_{\text{in}}(i) \cap PRSV(i)) \]
What definitions reach the beginning of each block?

Definitions reaching end of at least one of its predecessors

RCHin(i) = ∪ RCHout(j), s.t. j is a predecessor of i

Example: RCHin and RCHout sets

Initialize in and out sets to empty; Assume “top-down” visit order
Observations from example

- IN and OUT are recursive
 - May need multiple iterations to solve equations
- When is one iteration surely enough?
- For many data-flow problems, the IN, OUT, PRSV, and GEN sets can be represented as bit vectors

Union = Bit OR
Intersection = Bit AND

Steps in data flow analysis
(simplified)

Analysis Dependent
I Formulate the problem to be solved
Analysis Independent
II Solve the equations induced by I
III Propagate the data-flow values to all points in the program from entries to blocks
I Formulating the problem

(a) Lattice
- the abstract quantities over which the analysis will operate (lattice)
- e.g., sets of definitions for a variable

(b) Flow functions
- how each control-flow and computational construct affects the abstract quantities (flow functions)
- e.g., build the OUT equations for each statement

I(a) Lattice

A lattice L consists of a set of values and two operations meet (\(\wedge\)) and join (\(\vee\))

Properties (\(x, y, z, w \in L\)):
- \(\exists\) unique \(z\) and \(w\) s.t. \(x\wedge y = z\) and \(x\vee y = w\)
- \(x\wedge y = y\wedge x\) and \(x\vee y = y\vee x\) (commutativity)
- \((x\wedge y)\wedge z = x\wedge(y\wedge z)\) and \((x\vee y)\vee z = x\vee(y\vee z)\)
- there are unique elements \(\bot, T \in L\) s.t. \(x\wedge\bot = \bot\) and \(x\vee T = T\)
Example lattice: Reaching definitions

d1, d2, and d3 are definitions of some variable in the program

Meet of two elements: follow lines downwards from them until they meet = set union

Another useful view

- Define $x \subseteq y$ if and only if $x \land y = x$
- \subseteq is a partial order
 - Reflexive: $x \subseteq x$
 - Antisymmetric: if $x \subseteq y$ and $y \subseteq x$ then $x = y$
 - Transitive: if $x \subseteq y$ and $y \subseteq z$ then $x \subseteq z$
- The height of the lattice is the longest ascending chain in it ($\bot, x_1, \ldots, x_n, T$)
- What is the lattice height for reaching definitions?
I(b) Flow functions

- \(f: L \rightarrow L \)
- Models the effect of a programming language construct
- It is monotone if \(\forall x, y \in L, x \subseteq y \Rightarrow f(x) \subseteq f(y) \)

Intuition for data-flow analysis

- Starts by assuming most optimistic values (T) and applying flow functions until it reaches a fixed point
- At each stage the abstract value of some “variables” descend the lattice
- If the effective lattice height w.r.t. the flow functions is finite, then the analysis is guaranteed to terminate
Example lattice: Constant propagation

- At every basic block boundary, for each variable v
 - determine if v is a constant
 - if so, what is its value

\[T = \text{don't know} \]
\[\downarrow = \text{not a constant} \]

Flow function for constant propagation

Let an assignment be of the form \(x_3 = x_2 \oplus x_1 \)

\[\text{OUT}[b,x] = \text{IN}[b,x] \text{ if } x \neq x_3, \text{ otherwise} \]

<table>
<thead>
<tr>
<th>IN[b,x1]</th>
<th>IN[b,x2]</th>
<th>OUT[b,x3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>top</td>
<td>top</td>
<td>top</td>
</tr>
<tr>
<td>top</td>
<td>c2</td>
<td>top</td>
</tr>
<tr>
<td>bottom</td>
<td>bottom</td>
<td>bottom</td>
</tr>
<tr>
<td>top</td>
<td>top</td>
<td></td>
</tr>
<tr>
<td>c1</td>
<td>c2</td>
<td>c1+c2</td>
</tr>
<tr>
<td>bottom</td>
<td>bottom</td>
<td>bottom</td>
</tr>
<tr>
<td>top</td>
<td>bottom</td>
<td></td>
</tr>
<tr>
<td>bottom</td>
<td>c2</td>
<td>bottom</td>
</tr>
<tr>
<td>bottom</td>
<td>bottom</td>
<td></td>
</tr>
</tbody>
</table>
II Solving the data flow equations: Ideal solution

- For each node n: $\wedge f_p(\text{start-val})$, for all possibly executed paths p reaching n

Determining all possibly executed paths is undecidable

Solving the data flow equations: Meet over all paths

- Err in the conservative direction
- Meet over all paths (MOP)
 - Assume a path exists as long as there is a sequence of edges in the code
 - $\text{MOP}(n) = \wedge f_p(\text{start-val})$, for all paths p reaching n
- More conservative than ideal
 - $\text{MOP} = \text{IDEAL} \cap \text{Result(unexecuted-paths)}$
 - $\text{MOP} \subseteq \text{IDEAL}$
- MOP is also undecidable in the general case
Solving the data flow equations:
Maximal fixed point

- More conservative than MOP
- Focuses on edges rather than paths
- $\text{MFP} \subseteq \text{MOP} \subseteq \text{IDEAL}$
- $\text{MFP} = \text{MOP}$ if all flow functions are distributive
 - $f(x \land y) = f(x) \land f(y)$
- Is the constant propagation flow function distributive?

Solving data-flow equations:
Iterative style

\[
\forall \text{ nodes } n \neq \text{ Entry}, \ OUT(n) := T \\
OUT(\text{Entry}) := \text{init_value} \\
\text{change} = \text{TRUE} \\
\]

While Change {
 Change := FALSE \\
 \forall \text{ nodes } i \text{ in reverse postorder} {
 \text{in}[i] = \land \text{out}[p], \ p \text{ is a predecessor of } i \\
 \text{oldout} := \text{out}[i] \\
 \text{out}[i] := f_i(\text{in}[i]) \\
 \text{if oldout} \neq \text{out}[i] \text{ then change} := \text{TRUE}
 }
}

\]
Wrapping up

- Data-flow analysis is a common technique for static program analysis. Other approaches include
 - constraint based analyses, and
 - abstract interpretation