
Tuning Compiler Optimizations for Simultaneous Multithreading

Jack L. Lo, Susan J. Eggers, Henry M. Levy, Sujay S. Parekh, and Dean M. Tullsen*

Dept. of Computer Science and Engineering
Box 352350

University of Washington
Seattle, WA 98 195-2350

{jlo, sparekh, eggers, levy} @cs.washington.edu

Abstract

Compiler optimizations are often driven by specific
assumptions about the underlying architecture and imple-
mentation of the target machine. For example, when tar-
geting shared-memory multiprocessors, parallel programs
are compiled to minimize sharing, in order to decrease
high-cost, inter-processor communication.

This paper reexamines several compiler optimizations
in the context of simultaneous multithreading (SMT), a
processor architecture that issues instructions from mufti-
ple threads to the functional units each cycle. Unhke
shared-memory multiprocessors, SMT provides and bene-
fits from fine-grained sharing of processor and memory
system resources; unlike current uniprocessors, SMT
exposes and bene$ts from inter-thread instruction-level
parallelism when hiding latencies. Therefore, optimiza-
tions that are appropriate for these conventional machines
may be inappropriate for SMi’I We revisit three optimiza-
tions in this light: loop-iteration scheduling, software
speculative execution, and loop tiling. Our results show
that all three optimizations should be applied differently in
the context of SMT architectures: threads should be paral-
lelized with a cyclic, rather than a blocked algorithm;
non-loop programs should not be software speculated, and
compilers no longer need to be concerned about precisely
sizing tiles to match cache sizes. By following these new
guidelines, compilers can generate code that improves the
pelformance of programs executing on SMT machines.

1 Introduction

Compiler optimizations are typically driven by
specific assumptions about the underlying architecture
and implementation of the target machine. For example,
compilers schedule long-latency operations early to
minimize critical paths, order instructions based on the
processor’s issue slot restrictions to maximize functional

*Dept. of Computer Science and Engineering
University of California, San Diego

9500 Gilman Drive
La Jolla, CA 92093-0114

tullsen@cs.ucsd.edu

unit utilization, and allocate frequently used variables to
registers to benefit from their fast access times. When
new processing paradigms change these architectural
assumptions, however, we must reevaluate machinc-
dependent compiler optimizations in order to maximize
performance on the new machines.

Simultaneous multithreading (SMT) [32][31][21]
[13] is a multithreaded processor design that alters
several architectural assumptions on which compilers
have traditionally relied. On an SMT processor,
instructions from multiple threads can issue to the
functional units each cycle. To take advantage of the
simultaneous thread-issue capability, most processor
resources and all memory subsystem rcsourccs arc
dynamically shared among the threads. This single
feature is responsible for performance gains of almost 2X
over wide-issue superscalars and roughly 60% over
single-chip, shared memory multiprocessors on both
multi-programmed (SPEC92, SPECint95) and parallel
(SPLASH-2, SPECfp95) workloads; SMT achicvcs this
improvement while limiting the slowdown of a single
executing thread to under 2% [131.

Simultaneous multithreading presents to the
compiler a different model for hiding operation latcncics
and sharing code and data. Operation latencies are hidden
by instructions from all executing threads, not just by
those in the thread with the long-latency operation. In
addition, multi-thread instruction issue increases
instruction-level parallelism (ILP) to levels much higher
than can be sustained with a single thread. Both factors
suggest reconsidering uniprocessor optimizations that
hide latencies and expose ILP at the expense of increased
dynamic instruction counts: on an SMT the latency-
hiding benefits may not be needed, and the extra
instructions may consume resources that could bc better
utilized by instructions in concurrent threads.

Because multiple threads reside within a single SMT
processor, they can cheaply share common data and incur
no penalty from false sharing. In fact, they benefit from

114
1072-445l/97$10.00@1997IEEE

cross-thread spatial locality. This calls into question
compiler-driven parallelization techniques, originally
developed for distributed-memory multiprocessors, that
partition data to physically distributed threads to avoid
communication and coherence costs. On an SMT, it may
be beneficial to parallelize programs so that they process
the same or contiguous data.

This paper investigates the extent to which
simultaneous multithreading affects the use of several
compiler optimizations. In particular, we examine one
parallel technique (loop-iteration scheduling for compiler-
parallelized applications) and two optimizations that hide
memory latencies and expose instruction-level
parallelism (software speculative execution and loop
tiling). Our results prescribe a different usage of all three
optimizations when compiling for an SMT processor.

We found that, while blocked loop scheduling may
be useful for distributing data in distributed-memory
multiprocessors, cyclic iteration scheduling is more
appropriate for an SMT architecture, because it reduces
the TLB footprint of parallel applications. Since SMT
threads run on a single processor and share its memory
hierarchy, data can be shared among threads to improve
locality in memory pages.

Software speculative execution may incur additional
instruction overhead. On a conventional wide-issue
superscalar, instruction throughput is usually low enough
thar these additional instructions simply consume
resources that would otherwise go unused. However, on
an SMT processor, where simultaneous, multi-thread
instruction issue increases throughput to roughly 6.2 on
an S-wide processor, software speculative execution can
degrade performance, particularly for non-loop-based
applications.

Simultaneous multithreading also impacts loop tiling
techniques and tile size selection. SMT processors are far
less sensitive to variations in tile size than conventional
processors, which must find an appropriate balance
between large tiles with low instruction overhead and
small tiles with better cache reuse and higher hit rates.
SMT processors eliminate this performance sweet spot
by hiding the extra misses of larger tiles with the
additional thread-level parallelism provided by
multithreading. Tiled loops on an SMT should be
decomposed so that all threads compute on the same tile,
rather than creating a separate tile for each thread, as is
done on multiprocessors. Tiling in this way raises the
performance of SMT processors with moderately-sized
memory subsystems to that of more aggressive designs.

The remainder of this paper is organized as follows.
Section 2 provides a brief description of an SMT
processor. Section 3 discusses in more detail two
architectural assumptions that are affected by
simultaneous multithreading and their ramifications on
compiler-directed loop distribution, software speculative

execution, and loop tiling. Section 4 presents our
experimental methodology. Sections 5 through 7 examine
each of the compiler optimizations, providing
experimental results and analysis. Section 8 briefly
discusses other compiler issues raised by SMT. Related
work appears in Section 9, and we conclude in Section 10.

2 The microarchitecture of a simultaneous
multithreading processor

Our SMT design is an eight-wide, out-of-order
processor with hardware contexts for eight threads. Every
cycle the instruction fetch unit fetches four instructions
from each of two threads. The fetch unit favors high
throughput threads, fetching from the two threads that
have the fewest instructions waiting to be executed. After
fetching, instructions are decoded, their registers are
renamed, and they are inserted into either the integer or
floating point instruction queues. When their operands
become available, instructions (from any thread) issue to
the functional units for execution. Finally, instructions
retire in per-thread program order.

Little of the microarchitecture needs to be
redesigned to enable or optimize simultaneous
multithreading -- most components are an integral part of
any conventional, dynamically-scheduled superscalar.
The major exceptions are the larger register file (32
architectural registers per thread, plus 100 renaming
registers), two additional pipeline stages for accessing the
registers (one each for reading and writing), the
instruction fetch scheme mentioned above, and several
per-thread mechanisms, such as program counters, return
stacks, retirement and trap logic, and identifiers in the
TLB and branch target buffer. Notably missing from this
list is special per-thread hardware for scheduling
instructions onto the functional units. Instruction
scheduling is done as in a conventional, out-of-order
superscalar: instructions are issued after their operands
have been calculated or loaded from memory, without
regard to thread; the renaming hardware eliminates inter-
thread register name conflicts by mapping thread-specific
architectural registers onto the processor’s physical
registers (see [3 I] for more details).

All large hardware data structures (caches, TLBs,
and branch prediction tables) are shared among all
threads. The additional cross-thread conflicts in the
caches and branch prediction hardware are absorbed by
SMT’s enhanced latency-hiding capabilities [21], while
TLB interference can be addressed with a technique
described in Section 5.

3 Rethinking compiler optimizations

As explained above, simultaneous multithreading
relies on a novel feature for attaining greater processor
performance: the coupling of multithreading and wide- /

/

I
115

instruction issue by scheduling instructions from
different threads in the same cycle. The new design
prompts us to revisit compiler optimizations that
automatically parallelize loops for enhanced memory
performance and/or increase ILP. In this section we
discuss two factors affected by SMT’s unique design,
data sharing among threads and the availability of
instruction issue slots, in light of three compiler
optimizations they affect.

Inter-thread data sharing

Conventional parallelization techniques target
multiprocessors, in which threads are physically
distributed on different processors. To minimize cache
coherence and inter-processor communication overhead,
data and loop distribution techniques partition and
distribute data to match the physical topology of the
multiprocessor. Parallelizing compilers attempt to
decompose applications to minimize synchronization and
communication between loops. Typically, this is
achieved by allocating a disjoint set of data for each
processor, so that they can work independently
[341[101[71.

In contrast, on an SMT, multiple threads execute on
the same processor, affecting performance in two ways.
First, both real and false inter-thread data sharing entail
local memory accesses and incur no coherence overhead,
because of SMT’s shared Ll cache. Consequently,
sharing, and even false sharing, is beneficial. Second, by
sharing data among threads, the memory footprint of a
parallel application can be reduced, resulting in better
cache and TLB behavior. Both factors suggest a loop
distribution policy that clusters, rather then separates,
data for multiple threads.

Latency-hiding capabilities and the availability
of instruction issue slots

On most workloads, wide-issue processors typically
cannot sustain high instruction throughput, because of
low instruction-level parallelism in their single, executing
thread. Compiler optimizations, such as software
speculative execution and loop tiling (or blocking), try to
increase ILP (by hiding or reducing instruction latencies,
respectively), but often with the side effect of increasing
the dynamic instruction count. Despite the additional
instructions, the optimizations are often profitable,
because the instruction overhead can be accommodated
in otherwise idle functional units.

Because it can issue instructions from multiple
threads, an SMT processor has fewer empty issue slots;
in fact, sustained instruction throughput can be rather
high, roughly 2 times greater than on a conventional
superscalar [13]. Furthermore, SMT does a better job of
hiding latencies than single-threaded processors, because
it uses instructions from one thread to mask delays in

another. In such an environment, the aforementioned
optimizations may be less useful, or even detrimental,
because the overhead instructions compete with useful
instructions for hardware resources. SMT, with its
simultaneous multithreading capabilities, naturally
tolerates high latencies wifhollt the additional instruction
overhead.

4 Methodology

Before examining the compiler optimizations, we
describe the methodology used in the experiments. WC
chose applications from the SPEC 92 [12], SPEC 95 [30]
and SPLASH-2 [35] benchmark suites (Table 2). All
programs were compiled with the Multiflow trace
scheduling compiler [22] to generate DEC Alpha object
files. Multiflow was chosen, because it generates high-
quality code, using aggressive static scheduling for widc-
issue, loop unrolling, and other ILP-exposing
optimizations. Implicitly-parallel applications (the SPEC
suites) were first parallelized by the SUIF compiler [IS];
SUIF’s C output was then fed to Multiflow.

A blocked loop distribution policy commonly used
for multiprocessor execution has been implemented in
SUIF; because we used applications compiled with the
latest version of SUIF [5], but did not have access to its
source, we implemented an alternative algorithm
(described in Section 5) by hand. SUIF also finds tilcablc
loops, determines appropriate multiprocessor-oricntcd
tile sizes for particular data sets and caches, and then
generates tiled code; we experimented with other tilt
sizes with manual coding. Speculative execution was
enabled/disabled by modifying the Multiflow compiler’s
machine description file, which specifies which
instructions can be moved speculatively by the tract
scheduler. We experimented with both statically-
generated and profile-driven traces; for the latter,
profiling information was generated by instrumenting the
applications and then executing them with a training
input data set that differs from the set used during
simulation.

The object files generated by Multiflow were linked
with our versions of the ANL [4] and SUIF runtimc
libraries to create executables. Our SMT simulator
processes these unmodified Alpha executables and uses
emulation-based, instruction-level simulation to model in
detail the processor pipelines, hardware support for out-
of-order execution, and the entire memory hierarchy,
including TLB usage. The memory hierarchy in our
processor consists of two levels of cache, with sizes,
latencies, and bandwidth characteristics, as shown in
Table 2. We model the cache behavior, as well as bank
and bus contention. Two TLB sizes were used for the
loop distribution experiments (48 and 128 entries), to
illustrate how the performance of loop distribution
policies is sensitive to TLB size. The larger TLB

116

Data .!a,

33X33X33 array, 2 iterations 212M x x

hydro2d 112 iterations I 474M lxlxl I
mgtid 1164~64x6) grid. I iteration I 3.2~ lxlxl I
suizor 16~16x16~16. vectorIen.4K. 2 iterations

swim 512x512 grid, 10 itemtions

tomcatv 513,x513 army, 5 iterations

fit 64K data points

5.4B

419M

189M

32M

xx

xx

4

xx

X

LU ~]512til2matrix I 431M I I4 I
mdk ~~256Kkeys,ndixIK,512Kmax~~yceylue~ 6M I 1x1 I

writer- II 512 molecules. 3 timesteps
nsquared I s70hf I lx1 I

s
E
C.
i
”

:,
5 .

S
P
E.
C
9
2

II

m88ksim test input set. dhrystone

pd train input set. scrabble

mxm from matrix multiply of 256x128 and 128x64
NASA1 “nYS

gmt from

II

500~500 Gaussian elin&tion
NASA7

adI
II

lKslK stencil computation for solving
integmtion panial differential equations

784M

64M

700M

2.5SM

164M

56 M

29M

354 M

16M

X

X

X

X

X

~

X

X

X

X

Table 1: Benchmarks. The last three columns identify the
studies in which the applications are used. (LD = loop distribution,
SSE = software speculative execution, and T = tiling).

Table 2: Memory hierarchy parameters. When there
is a choice of values, the first (the more aggressive) represents a
forecast for an SMT implementation roughly three years in the
future and is used in all experiments. The second set is more
typical of todays memory subsystems and is used to emulate
larger data set sizes [29]; it is used in the tiling studies only.

represents a probable configuration for a (future) general-
purpose SMT; the smaller is more appropriate for a less
aggressive design, such as an SMT multimedia co-
processor, where page sizes are typically in the range of

2-SMB. For both TLB sizes, misses require two full
memory accesses, incurring a 160 cycle penalty. For
branch prediction, we use a McFarling-style hybrid
predictor with a 256-entry, 4way set-associative branch
target buffer, and an SK entry selector that chooses
between a global history predictor (13 history bits) and a
local predictor (a 2K-entry local history table that
indexes into a 4K-entry, 2-bit local prediction table) 1241.

Because of the length of the simulations, we limited
our detailed simulation results to the parallel computation
portion of the applications (the norm for simulating
parallel applications). For the initialization phases of the
applications, we used a fast simulation mode that only
simulates the caches, so that they were warm when the
main computation phases were reached. We then turned
on the detailed simulation model.

5 Loop distribution
To reduce communication and coherence overhead

in distributed-memory multiprocessors, parallelizing
compilers employ a blocked loop parallelization policy to
distribute iterations across processors. A blocked
distribution assigns each thread (processor) continuous
array data and iterations that manipulate them (Figure 1).
Figure 2 presents SMT speedups for applications
parallelized using a blocked distribution with two TLB
sizes. Good speedups are obtained for many applications
(as the number of threads is increased), but in the smaller
TLB the performance of several programs (hydroad,
swim, and tomcatv) degrades with 6 or 8 threads. The S-
thread case is particularly important, because most
applications will be parallelized to exploit all 8 hardware
contexts in an SMT. Analysis of the simulation
bottleneck metrics indicated that the slowdown was the
result of thrashing in the data TLB, as indicated by the
TLB miss rates of Table 3.

The TLB thrashing is a direct result of blocked
partitioning, which increases the total working set of an
application because threads work on disjoint data sets. In
the most severe cases, each of the 8 threads requires
many TLB entries, because loops stride through several
large arrays at once. Since the primary data sets are
usually larger than a typical SKB page size, at least one
TLB entry is required for each array.

The swim benchmark from SPECfp95 illustrates an
extreme example. In one loop, 9 large arrays are accessed
on each iteration of the loop. When the loop is
parallelized using a blocked distribution, the data TLB
footprint is 9 arrays * 8 threads = 72 TLB entries,
excluding the entries required for other data. With any
TLB size less than 72, significant thrashing will occur
and the parallelization is not profitable.

The lesson here is that the TLB is a shared resource
that needs to be managed efficiently in an SMT. At least
three approaches can be considered: (1) using fewer than

117
j

a) original loop
for Ij = 1; j c n; j++l

for (i = 0; i c m; i++)

d) blocked
i dimension

8 -.-I
ul[jl[il = u2[jl[il + tll8.0 * Z[jltil 2

b) blocked parallelization 2
for (j = max(n l myia , numthreads + 1, 1);

-.-I
a

j < min(n l (myid+l) I numthrends + 1, 10; .”

j+*j e) cyclic for (i = 0; i c m; i++l
ulIjl[il = u2[jl[il + t118.0 l Z[jllil 5

i dimension

c) cyclic parallellzation 'Z

for (j P myid + 18 j < ni j +n numthreads) f
for (i = 0; i -z m; i++)

ul[jl[il = uZ[jl[il + tV8.0 l Z[jltil 4
In

Figure 1: A blocked and cyclic loop disiibution example.
The code for an example loop nest is shown in a). When using a blocked
distribution, the code is structured as in b). The cyclic version is shown in c). On
the right, d) and e) illustrate which portions of the array are accessed by each
thread for the two policies. (For clarity, we assume 4 threads). Assume that each
row of the array is 2KB (512 double precision elements). With blocked distribution
(d), each thread accesses a different 8KB page in memory. With cyclic (e),
however, the loop is decomposed in a manner that allows all four threads to
access a single 8KB page at the same time, thus reducing the TLB footprint.

Table 3: TLB miss rates. Miss rates are shown for a
blocked distribution and a 4&entry data TLB. The bold entries
correspond to decreased performance (see Figure 2) when the
number of threads was increased.

8 threads when parallelizing, (2) increasing the data TLB
size, or (3) parallelizing loops differently.

The first alternative unnecessarily limits the use of
the thread hardware contexts, and neither exploits SMT
nor the parallel applications to their fullest potential. The
second choice incurs a cost in access time and hardware,
although with increasing chip densities, future processors
may be able to accommodate.’ Even with larger TLBs,
however, it is desirable to reduce the TLB footprint on an
SMT. A true SMT workload would be multiprogrammed:
for example, multiple parallel applications could execute
together, comprising more threads than hardware
contexts. The thread scheduler could schedule all 8
threads for the first parallel application, then context
switch to run the second, and later switch back to the
first. In this type of environment it would be performance-
wise to minimize the data TLB footprint required by each

‘We found that 64 entries did not solve the problem. However, a 128-
entry data TLB avoids TLB thrashing, aad as Figure 2b indicates,
achieves speedups, at least for the SPECfp95 data sets.

application. (As an example, the TLB footprint of a
multiprogrammed workload consisting of swim and
hydro2d would be greater than 128 entries.)

The third and most desirable solution relies on the
compiler to reduce the data TLB footprint. Rather than
distributing loop iterations in a blocked organization, it
could use a cyclic distribution to cluster the accesses of
multiple threads onto fewer pages. (With cyclic
partitioning, swim would consume 9 rather than 72 TLB
entries). Cyclic partitioning also requires less instruction
overhead in calculating array partition bounds, a non-
negligible, although much less important factor.
(Compare the blocked and cyclic loop distribution code
and data in Figure 1.)

3 o a) 48-entry data TLB
. I- ”

zg ‘D 0 $ 5 4
0 E s 3 b

5 3 g g
22 2 N”tFer

threads

b) 128-entry data TLB 4 o :

3.0 i
4 0

p
$

2.0

cn 1.0

0.0

Figure 2: Speedups over one thread
for blocked oarallelization.

Figure 3 illustrates the speedups attained by a cyclic
distribution over blocked, and Table 4 contains the
corresponding changes in data TLB miss rates. With the
48-entry TLB all applications did better with a cyclic
distribution. In most cases the significant decrease in data
TLB misses, coupled with the long 160 cycle TLB miss
penalty, was the major factor. Cyclic increased TLB
conflicts in tomcatv at 2 and 4 threads, but, because the
number of misses was so low, overall program
performance did not suffer. At 6 and 8 threads, tomcatv’s
blocked data TLB miss rate jumped to 2% and 1 I%,
causing a corresponding hike in speedup for cyclic.

Absolute miss rates in the larger data TLB arc low
enough (usually under 0.2%, except for applu and su2cor,
which reached 0.9%) that most changes produced little or
no benefit for cyclic. In contrast, sdcor saw degradation,
because cyclic scheduling increased loop unrolling
instruction overhead. This performance degradation was
not seen with the smaller TLB size, because cyclic’s

118

a) 48-entry data TLB b) 128-entry data TLB
u 2.0 u 2.0
2 d
2 ::
a E
2 1 thread 2

2 1.0 2 thread 2 g 4 thread 2 1.0

9 6 thread 4
-0
$

8 thread %

g
0.0

* El.
0.0

2 -cl
Q

g E 2 2 x z 8 E 2 5
4 6 0 6

E
2 2

s
E ; E g 2 &I 8

c R

E

7

f $4 2

F 9 0

I II JO-Cfllry7l.B
II

128.entry TLB

Numlxr of thnxds Numb cd thuds I

hyperblock scheduling [23], instructions from a predicted
branch path may be moved above a conditional branch,

m,xrid II osr osr

1 -l 6 8 so that their execution becomes speculative. If at runtime,
- - -

91% 98% 85% 698 the other branch path is taken, then the speculative
L -

08 0% 08 IJB
instructions are useless and potentially waste processor
resources.

Oa Tz -G -G On in-order superscalars or VLIW machines,
0% gsa,

-
91% sJa software speculation is necessary, because the hardware

0% 0% 0% 0% provides no scheduling assistance. On an SMT processor
;60a

-
-605i -64wi XG (whose execution core is an out-of-order superscalar), not

- - - only are instructions dynamically scheduled and
speculatively executed by the hardware, but
multithreading is also used to hide latencies. (As the

Table 4: Improvement (decrease) in TLB miss
rates of cyclic distribution over blocked.

improved TLB hit rate offset the overhead.

Figure 3: Speedup attained by-cyclic over blocked parallelization. For each application, the execution time for
Aockecl is normalized to 1.0 for all numbers of threads. Thus, each bar compares the speeclup for cyclic over blocked with the same
lumber of threads.

Mgrid saw a large performance improvement for
both TLB sizes, because of a reduction in dynamic
instruction count. As Figures lb and Ic illustrate, cyclic
parallelization requires fewer computations and no long-
latency divide.

In summary, these results suggest using a cyclic loop
distribution for SMT, rather than the traditional blocked
distribution. For parallel applications with large data
footprints, cyclic distribution increased program
speedups. (We saw speedups as high as 4.1, even with
the smallish SF’ECfp95 reference data sets.) For
applications with smaller data footprints, cyclic broke
even. Only in one application, where there was an odd
interaction with the loop unrolling factor, did cyclic
worsen performance.

In a multiprocessor of SMT processors, a cyclic
distribution would still be appropriate within each node.
A hybrid parallelization policy might be desirable,
though, with a blocked distribution across processors to
minimize inter-processor communication.

6 Software speculative execution

Today’s optimizing compilers rely on aggressive
code scheduling to hide instruction latencies. In global
scheduling techniques, such as trace scheduling [22] or

119

number of SMT threads is increased, instruction
throughput also increases.) Therefore, the latency-hiding
benefits of software speculative execution may be needed
less, or even be unnecessary, and the additional
instruction overhead introduced by incorrect speculations
may degrade performance.

Our experiments were designed to evaluate the
appropriateness of software speculative execution for an
SMT processor. The results highlight two factors that
determine its effectiveness for SMT: static branch
prediction accuracy and instruction throughput.

Correctly-speculated instructions have no instruction
overhead; incorrectly-speculated instructions, however,
add to the dynamic instruction count. Therefore,
speculative execution is more beneficial for applications
that have high speculation accuracy, e.g., loop-based
programs with either profile-driven or state-of-the-art
static branch prediction.

Table 5 compares the dynamic instruction counts
between (profile-driven)2 speculative and non-
speculative versions of our applications. Small increases

‘We used profile-driven speculation lo provide ;I best-case comparison to
SMT. Without profiles, more mispredictions would have occurred and
more overhead instructions would have been generated. Consequently,
software speculation would have worse performance than we report,
making its absence appear even more beneficial for SMT.

- ,

Table 5: Percentage increase in dynamic
instruction count due to profile-driven software
Spt?CUkItiVe t?XeCUtiOn. Data are shown for 8 threads. (One
thread numbers were identical or very close). Applications in bold
have high speculative instruction overhead and high IPC without
speculation; those in italics have only the former.

Table 6: Throughput (instructions per cycle) with
and without profile-driven software speculation
for 8 threads. Programs in bold have high IPC without
speculation, plus high speculation overhead; those in italics have
only the former.

in the dynamic instruction count indicate that the
compiler (with the assistance of profiling information)
has been able to accurately predict which paths will be
executed.3 Consequently, speculation may incur no
penalties. Higher increases in dynamic instruction count,
on the other hand, mean wrong-path speculations, and a
probable loss in SMT performance.

While instruction overhead influences the
effectiveness of speculation, it is not the only factor. The
level of instruction throughput in programs without
speculation is also important, because it determines how
easily speculative overhead can be absorbed. With
sufficient instruction issue bandwidth (low IPC),
incorrect speculations may cause no harm; with higher
per-thread ILP or more threads, software speculation
should be less profitable, because incorrectly-speculated
instructions are more likely to compete with useful
instructions for processor resources (in particular, fetch
bandwidth and functional unit issue). Table 6 contains
the instruction throughput for each of the applications.
For some programs IPC is higher with software

3.All the SPECfp95 progmms, mdix from SPLASH-Z and compress
from SPECint95, nre loop-based; all have small increases in dynnmic
instruction count with speculation.

120

c
a) SPECfp95

b) SPLASH2 and SPEC95 Int

Figure 4: Speedups of applications executing
without software speculation over with
speculation (speculative execution cycles / no
speculation execution CyClEi). Bars that are greater
than 1 .O indicate that no speculation is better.

speculation, indicating some degree of absorption of the
speculation overhead. In others, it is lower, because of
additional hardware resource conflicts, most notably Ll
cache misses.

Speculative instruction overhead (related to static
branch prediction accuracy) and instruction throughput
rogether explain the speedups (or lack thereof) illustrated
in Figure 4. When both factors were high (the non-loop-
based fft, li, and LU), speedups without software
speculation were greatest, ranging up to 22%.4 If one
factor was low or only moderate, speedups were minimal
or nonexistent (the SPECfp95 applications, radix and
water-nsquared had only high IPC; go, m88ksim and pcrl
had only speculation overhead).5 Without either factor,
software speculation helped performance, and for the
same reasons it benefits other architectures -- it hid
latencies and executed the speculative instructions in
otherwise idle functional units.

The bottom line is that, while loop-based
applications should be compiled with software
speculative execution, non-loop applications should bc
compiled without it. Doing so either improves SMT
program performance or maintains its current level --
performance is never hurtP

4.For these applications (and a few others ns well), ns more threads arc
used, the ndvnntnge of turning off speculation generally becomes even
larger. Additional threads provide more parallelism, and therefore, spccu-
lative instructions nre more likely to compete with useful instructions for
processor resources.

7 Loop tiling
In order to improve cache behavior, loops can be

tiled to take advantage of data reuse. In this section, we
examine two tiling issues: tile size selection and the
distribution of tiles to threads.

If the tile size is chosen appropriately, the reduction
in average memory access time more than compensates
for the tiling overhead instructions [20][11][6]. (The code
in Figures 6b and 6c illustrates the source of this
overhead). On an SMT, however, tiling may be less
beneficial. First, SMT’s enhanced latency-hiding
capabilities may render tiling unnecessary. Second, the
additional tiling instructions may increase execution
time, given SMT’s higher (multithreaded) throughput.
(These are the same factors that influence whether to
software speculate.)

To address these issues, we examined tileable loop
nests with different memory access characteristics,
executing on an SMT processor. The benefits of tiling
vary when the size of the cache is changed. Smaller
caches require smaller tiles, which naturally introduce
more instruction overhead. On the other hand, smaller
tiles also produce lower average memory latencies -- i.e.,
fewer conflict misses -- so the latency reducing benefit of
tiling is better. We therefore varied tile sizes to measure
the performance impact of a range of tiling overhead. We
also simulated two memory hierarchies to gauge the
interaction between cache size, memory latency and tile
size. The larger memory configuration represents a
probable SMT memory subsystem for machines in
production approximately 3 years in the future (see
Section 4). The other configuration is smaller, modeling
today’s memory hierarchies, and is designed to provide a
more appropriate ratio between data set and cache size,
modeling loops with larger, i.e., more realistic, data sets
than those in our benchmarks. For these experiments,
each thread was given a separate tile (the tiling norm).

Figure 5 presents the performance (total execution
cycles, average memory access time, and dynamic
instruction count for a range of tile sizes and the larger
memory configuration) of an S-thread SMT execution of
each application and compares it to a single-thread run
(approximating execution on a superscalar [13]). The
results indicate that tiling is profitable on an SMT, just as
it is on conventional processors. Mxm may seem to be an
exception, since tiling brings no improvement, but it is an
exception that shows there is no harm in applying the
optimization. Programs executing on an SMT appear to
be insensitive to tile size; at almost all tile sizes
examined, SMT was able to hide memory latencies (as

‘Even though it has few floating point computations, water-spatial had a
high 1PC without speculation (6.5). Therefore the speculative instructions
bottlenecked the integer units, and execution without speculation was
more profitable.

adi

dynamic inrtrudion count in millions

8 threads 8 threads 8 threads

Q-~Total execution cydes in millions
WAverage memory acces time in cydes (AMAT)

1 thread 1 thread 1 thread
!O

Q-~Total exeation cydes in millions
FLVAverage memory access time in cydes (AhfAT)

Figure 5: Tiling results with the larger memory
subsystem and separate tiles/thread. AI] the
horizontal axes are tile size. A tile size of 0 means no tiling; sizes
greater than 0 are one dimension of the tile, measured in array
elemer$ The vertical axes are metrics for evaluating tiling:
dynamic mstruction count, total execution cycles and AMAT.

indicated by the flat AMAT curves), while still absorbing
iiling overhead. Therefore SMT is less dependent on
static algorithms to determine optimal tile sizes for
particular caches and working sets. In contrast,
conventional processors are more likely to have a tile size
sweet spot. Even with out-of-order execution, modern
processors, as well as alternative single-die processor
architectures, lack sufficient latency-hiding abilities;
consequently, they require more exact tile size
calculations from the compiler.

Tile size is also not a performance determinant with
the less aggressive memory subsystem (results not
shown), indicating that tiling on SMT is robust across
memory hierarchies (or, alternatively, a range of data set
sizes). Execution time is, of course, higher, because
performance is more dependent on AMAT parameters,
rather than tiling overhead. Only adi became slightly less
tolerant of tile size changes. At the largest tile size
measured (32x32), its AMAT increased sharply, because
of inter-thread interference in the small cache. For this
loop nest, either tiles should be sized so that all fit in the

6.Keep in mind that had we speculated without run-time support (the pro-
filing), the relative benefit of no speculation (versus speculation) would
have been higher. For example, at 8 threads water-nsquared breaks even
with profile-driven speculation; however, relying only on Multiflow’s
static branch prediction gives no speculation a slight edge, with a
speedup of 1.1. Nevertheless, the general conclusions still hold: both
good branch prediction and low multi-thread IPC are needed for software
speculation to benefit applications executing on an SMT.

,

121 /

I
I

.I ~-

a) original 1009
for (j = 1; j c N; j++

for (k = 1; k < L; k++)
for (i = 1: i < M; i++l

c(jltkl += alilIkl*b[jl[il;

b) blocked tiling
ub = min(N*(myid+ll/numthreads+l. N);
lb = max(N*myid/numthreads+l. 1);
for (jT=lb; jT e ub; jT+=jTsize)

for (kT=l; kT <= L; kT+=kTsize)
for (iT=l: iT < M; iT+=iTsize)

for (j=jT; j <n min(N,jT+jTsize-l);j++)
for lk=ma%(l. kT);

k <= min(L,kT+kTsize-1); k++)
for (iniT; i -c= min(M,iT+iTsize-l);i++)

c(jl[kl += a[iltkl*b(jllil;

c) cyclic tiling
ub = min(N l (myid + l)/numthreads + 1, N):
lb = maxIN l myid I numthreads + 1, 1);
for (jT ii lb: jT c= ub; jT += jTsize)

for (kT = 1; kT -c= L; kT += kTsize)
for (iT = 1; iT < M: iT += iTsize)

for (j P jT+myidi j c= min(N,jT+jTsize-1);
j += runthreads)

for (k=maxll, kT1;
k c= min(L,kT+kTsize-1); k++)

for (i=iT; i <= min(M,iT + iTsize-1);
i++)

c[jl[kl += aIillkl*btjllil;

Figure 6: Code for blocked and cyclic
versions of a tiled loop nest. J

:ri
below)

tiling technique or an alternative
should be used.

(desc bed

The second loop tiling issue is the distribution of
tiles to threads. When parallelizing loops for
multiprocessors, a different tile is allocated to each
processor (thread) to maximize reuse and reduce inter-
processor communication. On an SMT, however, tiling in
this manner could be detrimental. Private, per-thread tiles
discourage inter-thread tile sharing and increase the total-
thread tile footprint on the single-processor SMT (the
same factors that make blocked loop iteration scheduling
inappropriate for SMT).

a) blocked b) cyclic c) optimized cyclic
i dimension i dimension i dimension

Thread 0
Thread 1 El

Thread 2
Thread 3

figure 7: A comparison of blocked and cyclic tiling
echniques for multiple threads. The blocked tfllng Is
hown in a). Each tile is a 4x4 array of elements. The numbers
epresent the order in which tiles are accessed by each thread. For
yclic tiling, each tile is still a 4x4 array, but now the tile is shared by
111 threads. In this example, each thread
hown in b). With cyclic tiling, each lhrea %

ets one row of the tile, as
works on a smaller chunk

d data at a time, so the tiling overhead is greater. In c), the tile size
j increased to 8x8 to reduce the overhead. Within each tile, each
nread is responsible for 16 of the elements, as In the original
Ilocked example.

Rather than giving each thread its own tile (called
blocked tiling), a single tile can be shared by all threads,
and loop iterations can be distributed cyclically across
the threads (cyclic tiling). (See Figure 6 for a code
explanation of blocked and cyclic tiling, and Figure 7 for
the effect on the per-thread data layout).

Because the tile is shared, cyclic tiling can be
optimized by increasing the tile size to reduce overhead
(Figure 7~). With larger tiles, cyclic tiling can drop
execution times of applications executing on small
memory SMTs closer to that of SMTs with more
aggressive memory hierarchies. (Or, put another way, the
performance of programs with large data sets can
approach those with smaller.) For example, Figure 8c
illustrates that with larger tile sizes (greater than 8 array
elements per dimension) cyclic tiling reduced mxm’s
AMAT enough to decrease average execution time on the
smaller cache hierarchy by 51% (compare to blocked in
Figure 8b) and to within 35% of blocked tiling on a
memory subsystem several times the size (Figure Sa).
Only at the very smallest tile size did an increase in tiling

0-
0 5 10 15 20

0-
0 5 10 15 20

Dynamic instruction count in millions

b)
20 20 2

10 10

liiziii

1

0 0
0 5 10 15 20 0 5 10 15 20

~-0 Total execution time in millions of cycles
- Avenge memory ncccss time in cycles (AhIATl

Figure 8: Tiling performance of 84hread mxm
Tile sizes are along the x-axis. Results are shown for a
blocked tiling and the larger memory subsystem, b
blocked tiling with the smaller memory subsystem, ant
c) cyclic tiling, also with the smaller memory subsystem,

overhead overwhelm SMT’s ability to hide memory
latency.

Cyclic tiling is still appropriate for a multiprocessor
of SMTs. A hierarchical [8] or hybrid tiling approach
might be most effective. Cyclic tiling could be used to
maximize locality in each processor, while blocked tiling
could distribute tiles across processors to minimize intcr-
processor communication.

8 Other compiler optimizations

In addition to the optimizations studied in this paper,
compiler-directed prefetching, predicated execution and
software pipelining should also be re-evaluated in the
context of an SMT processor.

On a conventional processor, compiler-directed
prefetching [26] can be useful for tolerating memory

122

latencies, as long as prefetch overhead (due to prefetch
instructions, additional memory bandwidth, and/or cache
interference) is minimal. On an SMT, this overhead is
more detrimental: it interferes not only with the thread
doing the prefetching, but also competes with other
threads.

Predicated execution [23][16][28] is an architectural
model in which instruction execution can be guarded by
boolean predicates that determine whether an instruction
should be executed or nullified. Compilers can then use
if-conversion [2] to transform control dependences into
data dependences, thereby exposing more ILP. Like
software speculative execution, aggressive predication
can incur additional instruction overhead by executing
instructions that are either nullified or produce results
that are never used.

Software pipelining [9][27][18][1] improves
instruction scheduling by overlapping the execution of
multiple loop iterations. Rather than pipelining loops,
SMT can execute them in parallel in separate hardware
contexts. Doing so alleviates the increased register
pressure normally associated with software pipelining.
Multithreading could also be combined with software
pipelining if necessary.

Most of the optimizations discussed in this paper
were originally designed to increase single-thread ILP.
While intra-thread parallelism is still important on an
SMT processor, simultaneous multithreading relies on
multiple threads to provide useful parallelism, and
throughput often becomes a more important performance
metric. SMT raises the issue of compiling for throughput
or for a single-thread. For example, from the perspective
of a single running thread, these optimizations, as
traditionally applied, may be desirable to reduce the
thread’s running time. But from a global perspective,
greater throughput (and therefore more useful work) can
be achieved by limiting the amount of speculative work.

9 Related work

The three compiler optimizations discussed in this
paper have been widely investigated in non-SMT
architectures. Loop iteration scheduling for shared-
memory multiprocessors has been evaluated by Wolf and
Lam [34], Carr, McKinley, and Tseng [7], Anderson,
Amarasinghe, and Lam [3], and Cierniak and Li [lo],
among others. These studies focus on scheduling to
minimize communication and synchronization overhead;
all restructured loops and data layout to improve access
locality for each processor. In particular, Anderson et al.,
discuss the blocked and cyclic mapping schemes, and
present a heuristic for choosing between them.

Global scheduling optimizations, like trace
scheduling [22], superblocks 1251 and hyperblocks [23],
allow code motion (including speculative motion) across
basic blocks, thereby exposing more ILP for statically-

123

- .-- ___-

scheduled VLIWs and wide-issue superscalars. In their
study on ILP limits, Lam and Wilson [I91 found that
speculation provides greater speedups on loop-based
numeric applications than on non-numeric codes, but
their study did not include the effects of wrong-path
instructions.

Previous work in code transformation for improved
locality has proposed various frameworks and algorithms
for selecting and applying a range of loop
transformations [14][33][6][17][34][7]. These studies
illustrate the effectiveness of tiling and also propose
other loop transformations for enabling better tiling.
Lam, Rothberg, and Wolf [20], Coleman and McKinley
1111, and Carr et al., [6] show that application
performance is sensitive to the tile size, and present
techniques for selecting tile sizes based on problem-size
and cache parameters, rather than targeting a fixed-size
or fixed-cache occupancy.

10 Conclusions

This paper has examined compiler optimizations in
the context of a simultaneous multithreading architecture.
An SMT architecture differs from previous parallel
architectures in several significant ways. First, SMT
threads share processor and memory system resources of
a single processor on a fine-grained basis, even within a
single cycle. Optimizations for an SMT should therefore
seek to benefit from this line-grained sharing, rather than
avoiding it, as is done on conventional shared-memory
multiprocessors. Second, SMT hides intra-thread
latencies by using instructions from other active threads;
optimizations that expose ILP may not be needed. Third,
instruction throughput on an SMT is high; therefore
optimizations that increase instruction count may degrade
performance.

An effective compilation strategy for simultaneous
multithreading processors must recognize these unique
characteristics. Our results show specific cases where an
SMT processor can benefit from changing the compiler
optimization strategy. In particular, we showed that (1)
cyclic iteration scheduling (as opposed to blocked
scheduling) is more appropriate for an SMT, because of
its ability to reduce the TLB footprint; (2) software
speculative execution can be bad for an SMT, because it
decreases useful instruction throughput; (3) loop tiling
algorithms can be less concerned with determining the
exact tile size, because SMT performance is less sensitive
to tile size; and (4) loop tiling to increase, rather than
reduce, inter-thread tile sharing, is more appropriate for
an SMT, because it increases the benefit of sharing
memory system resources.

Acknowledgments

We would like to thank John O’Donnell of Equator

Technologies, Inc. and Tryggve Fossum of Digital
Equipment Corp. for the source to the Alpha AXP
version of the Multiflow compiler; and Jennifer
Anderson of the DEC Western Research Laboratory for
providing us with SUIF-parallelized copies of the
SPECfp95 benchmarks. We also would like to thank
Jeffrey Dean of DEC WRL and the referees, whose
comments helped improve this paper. This research was
supported by the Washington Technology Center, NSF
grants MIP-9632977, CCR-9200832, and CCR-9632769,
DARPA grant F30602-97-2-0226, ONR grants NO0014
92-J-1395 and N00014-94-1-1136, DEC WRL, and a
fellowship from Intel Corporation.

References

PI

[31

141

151

[61

[71

Bl

191

[lOI

HII

1121

u31

t141

WI

A. Aiken and A. Nicolau. Optimal loopparallelization. InACMSI(;-
PLAN ‘88 Conf: on Programming Language Design and Implemen-
ration, p. 308-317, June 1988.
J. Allen, et al. Conversion of control dependence to data dependence.
In Conj: Record of the Tenth Ann. ACM Symp. on Principles of Pro-
gramming Languages, p. 177-189, January 1983.
J. M. Anderson, S. P. Amarasinghe, and M. S. Lam. Data and com-
putation transformations for multiprocessors. In Fifrh ACM SIG-
PLAN Symp. on Principles & Practice of Parallel Programming, p.
166-178, July 1995.
J. Boyle, et al. Portable Programs for ParaNel Processors. Holt,
Rinehart, and Winston, Inc., 1987.
E. Bugnion, et al. Compiler-directed page coloring for multiproces-
sors. In Seventh Int’l Conj o~i Architectural Supportfor Program-
ming Languages and Operath~g Systems, p. 244-255. October 1997.
S. Can and K. Kennedy. Compiler blockability of numerical algo-
rithms. In Supercomputing ‘92, p. 114-124, November 1992.
S. Carr, K. S. McKinley, and C. W. Tseng. Compiler optimizations
for improving data locality. In Sixth Int’l Conf. on Architectural Sup-
port for Programming Languages and Operating Systems, p. 252-
262, October 1994.
L. Carter, J. Ferrante, and S. F. Hummel. Hierarchical tiling for im-
proved superscalar performance. In Proceedings of the Ninth Int’l
Parallel Processing Sytnp.. p. 239-245, April 1995.
A. E. Charlesworth. An approach to scientific army processing: The
architectural design of the AP-120B/FPS-164 family. IEEE Cotnlmt-
er, 14(9):18-27, December 1981.
M. Ciemiak and W. Li. Unifying data and control transformations
for distributed shared-memoly machines. In ACM SIGPLAN ‘95
Conj: on Programming Language Design and Implementation, p.
205-217, June 1995.
S. Coleman and K. S. McKinley. Tile size selection using cache or-
ganization and data layout. In ACM SIGPLAN ‘9.5 Cant on Pro-
gramtning Language Design and Implementation, p. 279-290, June
1995.
K. Dixit. New CPU benchmark suites from SPEC. In COMPCON
‘92 digest of papers, p. 305-3 10, February 1992.
S. J. Eggers, et al. Simultaneous multithreading: A platform for next-
genemtion processors. In IEEE Micro, October 1997.
D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local
memory management by global program transformation. J. of Par-
allel and Distributed Computing, 5(5):587-616, October 1988.
M. W. Hall, et al. Maximizing multiprocessor performance with the

124

1161

r171

[I81

v91

1201

1211

SUIFcompiler. IEEE Computer, 29(12):&l-89. December 1996.
P. Hsu and E. Davidson. Highly concurrent scalar processing, In
13th Ann. Int’l Symp. on Computer Architecture, p, 386-395, June
1986.
K. Kennedy and K. S. McKinley. Maximizing loop parallelism and
improving data locality via loop fusion and distribution, In Lntrguu~
es and Compilers for Parallel Computing. 6th Int’l Workshop, p.
301-319. August 1993.
M. Lam. Software pipelining: An effective scheduling technique for
VLIW machines. In ACM SIGPLAN ‘88 Cot$ O~I Programming
Language Design and Implementadon, p. 318-328, June 1988.
M. Lam and R. Wilson. Limits of control flow on pnnllclism. In
19th Ann. Int’l Symp. on Cornpurer Archilecture, p, 46-57, Mny
1992.
M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance
and optimizations of blocked algorithms. In Fourlh Int’l CotiJ ori Ar-
chitectural Support for Progratmning Languages and Operaring
Systems, p. 63-74, April 199 1.
J. L. Lo, et al. Converting thread-level parallelism to instruclion-lev-
el parallelism via simultaneous multithreading. ACM Trans. on
Computer and Systems, 15(3), August 1997.

[22] P. G. Lowney. et al. The Multiflow trace scheduling compiler. J. of
Supercomputing, 7(l/2):51-142, May 1993.

[23] S. A. Mahlke, et al. Effective compiler support for predicated cxccu-
tion using the hyperblock. In 25111 Int’l Sytnp. on Microarchlkchrre,
p. 4.5-54, December 1992.

1241 S. McFarling. Combining branch predictors. Technical Report TN-
36, DEC-Western Research Laboratory, June 1993.

[25] W.W. Hwu, et al. The superblock: An effective technique for VLIW
and superscalar compilation. J. of Supercotttputing, 7(l/2):229-248,
May 1993.

1261 T. C. Mowry, M. S. Lam, and A.‘Gupta. Design and evaluation of n
compiler algorithm for prefetching. In Fifh ht’l Corrf. ot1 Archirec-
rural Supportfor Programming Lunsuages and Operathlg SysIems,
p. 62-75, September 1992.

[27] B. R. Rau and C. Glaeser. Some scheduling techniques and an easily
schedulable horizontal architecture for high performance scicntilic
computing. In M/I Ann. Workshop on Microprogratntnlng, p, 183-
197, October 1981.

[28] B. R. Rau, et al. The Cydn 5 departmental supercomputer. I&%
Cotnputer, 2212-35, January 1989.

[29] J. P. Singh, J. L. Hennessy. and A. Gupta. Scaling parallel progrnms
for multiprocessors: Methodology and examples. IEEE Cotnputer,
27(7):42-50, July 1993.

[30] SPEC. SPEC CPU ‘95 Technical Mamral. August 1995.
[31] D. M. Tullsen, et al. Exploiting choice: Instruction fetch and issue on

an implementable simultaneous multithreading processor. In 23rd
Ann. In0 Symp. on Cornpurer Architecrure, p. 191-202, May 1996.

[32] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multi-
threading: Maximizing on-chip parallelism. In 22nd Ann. It~‘l Syrtp.
on Cornpurer Architecture, p. 392-403, June 1995.

1331 M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In
ACM SIGPUN ‘91 Conj on Programming Language Design and
Implementation, p. 30-44, June 1991.

[34] M. E. Wolf and M. S. Lam. A loop transformation theory and an al*
gorithm to maximize parallelism. IEEE Trans. on Parallel and Dls.
tributed Systems, 2(4):452-47 1, October 199 1.

[35] S. C. Woo, et al. The SPLASH-2 programs: Characterization and
methodological considerations. In 22ndAnn. Itlt’lSytttp, 011 Cotttpttpuf-
er Architecture, p. 24-36, June 1995.

