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Abstract 

Compiler optimizations are often driven by specific 
assumptions about the underlying architecture and imple- 
mentation of the target machine. For example, when tar- 
geting shared-memory multiprocessors, parallel programs 
are compiled to minimize sharing, in order to decrease 
high-cost, inter-processor communication. 

This paper reexamines several compiler optimizations 
in the context of simultaneous multithreading (SMT), a 
processor architecture that issues instructions from mufti- 
ple threads to the functional units each cycle. Unhke 
shared-memory multiprocessors, SMT provides and bene- 
fits from fine-grained sharing of processor and memory 
system resources; unlike current uniprocessors, SMT 
exposes and bene$ts from inter-thread instruction-level 
parallelism when hiding latencies. Therefore, optimiza- 
tions that are appropriate for these conventional machines 
may be inappropriate for SMi’I We revisit three optimiza- 
tions in this light: loop-iteration scheduling, software 
speculative execution, and loop tiling. Our results show 
that all three optimizations should be applied differently in 
the context of SMT architectures: threads should be paral- 
lelized with a cyclic, rather than a blocked algorithm; 
non-loop programs should not be software speculated, and 
compilers no longer need to be concerned about precisely 
sizing tiles to match cache sizes. By following these new 
guidelines, compilers can generate code that improves the 
pelformance of programs executing on SMT machines. 

1 Introduction 

Compiler optimizations are typically driven by 
specific assumptions about the underlying architecture 
and implementation of the target machine. For example, 
compilers schedule long-latency operations early to 
minimize critical paths, order instructions based on the 
processor’s issue slot restrictions to maximize functional 
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unit utilization, and allocate frequently used variables to 
registers to benefit from their fast access times. When 
new processing paradigms change these architectural 
assumptions, however, we must reevaluate machinc- 
dependent compiler optimizations in order to maximize 
performance on the new machines. 

Simultaneous multithreading (SMT) [32][31][21] 
[13] is a multithreaded processor design that alters 
several architectural assumptions on which compilers 
have traditionally relied. On an SMT processor, 
instructions from multiple threads can issue to the 
functional units each cycle. To take advantage of the 
simultaneous thread-issue capability, most processor 
resources and all memory subsystem rcsourccs arc 
dynamically shared among the threads. This single 
feature is responsible for performance gains of almost 2X 
over wide-issue superscalars and roughly 60% over 
single-chip, shared memory multiprocessors on both 
multi-programmed (SPEC92, SPECint95) and parallel 
(SPLASH-2, SPECfp95) workloads; SMT achicvcs this 
improvement while limiting the slowdown of a single 
executing thread to under 2% [ 131. 

Simultaneous multithreading presents to the 
compiler a different model for hiding operation latcncics 
and sharing code and data. Operation latencies are hidden 
by instructions from all executing threads, not just by 
those in the thread with the long-latency operation. In 
addition, multi-thread instruction issue increases 
instruction-level parallelism (ILP) to levels much higher 
than can be sustained with a single thread. Both factors 
suggest reconsidering uniprocessor optimizations that 
hide latencies and expose ILP at the expense of increased 
dynamic instruction counts: on an SMT the latency- 
hiding benefits may not be needed, and the extra 
instructions may consume resources that could bc better 
utilized by instructions in concurrent threads. 

Because multiple threads reside within a single SMT 
processor, they can cheaply share common data and incur 
no penalty from false sharing. In fact, they benefit from 
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cross-thread spatial locality. This calls into question 
compiler-driven parallelization techniques, originally 
developed for distributed-memory multiprocessors, that 
partition data to physically distributed threads to avoid 
communication and coherence costs. On an SMT, it may 
be beneficial to parallelize programs so that they process 
the same or contiguous data. 

This paper investigates the extent to which 
simultaneous multithreading affects the use of several 
compiler optimizations. In particular, we examine one 
parallel technique (loop-iteration scheduling for compiler- 
parallelized applications) and two optimizations that hide 
memory latencies and expose instruction-level 
parallelism (software speculative execution and loop 
tiling). Our results prescribe a different usage of all three 
optimizations when compiling for an SMT processor. 

We found that, while blocked loop scheduling may 
be useful for distributing data in distributed-memory 
multiprocessors, cyclic iteration scheduling is more 
appropriate for an SMT architecture, because it reduces 
the TLB footprint of parallel applications. Since SMT 
threads run on a single processor and share its memory 
hierarchy, data can be shared among threads to improve 
locality in memory pages. 

Software speculative execution may incur additional 
instruction overhead. On a conventional wide-issue 
superscalar, instruction throughput is usually low enough 
thar these additional instructions simply consume 
resources that would otherwise go unused. However, on 
an SMT processor, where simultaneous, multi-thread 
instruction issue increases throughput to roughly 6.2 on 
an S-wide processor, software speculative execution can 
degrade performance, particularly for non-loop-based 
applications. 

Simultaneous multithreading also impacts loop tiling 
techniques and tile size selection. SMT processors are far 
less sensitive to variations in tile size than conventional 
processors, which must find an appropriate balance 
between large tiles with low instruction overhead and 
small tiles with better cache reuse and higher hit rates. 
SMT processors eliminate this performance sweet spot 
by hiding the extra misses of larger tiles with the 
additional thread-level parallelism provided by 
multithreading. Tiled loops on an SMT should be 
decomposed so that all threads compute on the same tile, 
rather than creating a separate tile for each thread, as is 
done on multiprocessors. Tiling in this way raises the 
performance of SMT processors with moderately-sized 
memory subsystems to that of more aggressive designs. 

The remainder of this paper is organized as follows. 
Section 2 provides a brief description of an SMT 
processor. Section 3 discusses in more detail two 
architectural assumptions that are affected by 
simultaneous multithreading and their ramifications on 
compiler-directed loop distribution, software speculative 

execution, and loop tiling. Section 4 presents our 
experimental methodology. Sections 5 through 7 examine 
each of the compiler optimizations, providing 
experimental results and analysis. Section 8 briefly 
discusses other compiler issues raised by SMT. Related 
work appears in Section 9, and we conclude in Section 10. 

2 The microarchitecture of a simultaneous 
multithreading processor 

Our SMT design is an eight-wide, out-of-order 
processor with hardware contexts for eight threads. Every 
cycle the instruction fetch unit fetches four instructions 
from each of two threads. The fetch unit favors high 
throughput threads, fetching from the two threads that 
have the fewest instructions waiting to be executed. After 
fetching, instructions are decoded, their registers are 
renamed, and they are inserted into either the integer or 
floating point instruction queues. When their operands 
become available, instructions (from any thread) issue to 
the functional units for execution. Finally, instructions 
retire in per-thread program order. 

Little of the microarchitecture needs to be 
redesigned to enable or optimize simultaneous 
multithreading -- most components are an integral part of 
any conventional, dynamically-scheduled superscalar. 
The major exceptions are the larger register file (32 
architectural registers per thread, plus 100 renaming 
registers), two additional pipeline stages for accessing the 
registers (one each for reading and writing), the 
instruction fetch scheme mentioned above, and several 
per-thread mechanisms, such as program counters, return 
stacks, retirement and trap logic, and identifiers in the 
TLB and branch target buffer. Notably missing from this 
list is special per-thread hardware for scheduling 
instructions onto the functional units. Instruction 
scheduling is done as in a conventional, out-of-order 
superscalar: instructions are issued after their operands 
have been calculated or loaded from memory, without 
regard to thread; the renaming hardware eliminates inter- 
thread register name conflicts by mapping thread-specific 
architectural registers onto the processor’s physical 
registers (see [3 I] for more details). 

All large hardware data structures (caches, TLBs, 
and branch prediction tables) are shared among all 
threads. The additional cross-thread conflicts in the 
caches and branch prediction hardware are absorbed by 
SMT’s enhanced latency-hiding capabilities [21], while 
TLB interference can be addressed with a technique 
described in Section 5. 

3 Rethinking compiler optimizations 

As explained above, simultaneous multithreading 
relies on a novel feature for attaining greater processor 
performance: the coupling of multithreading and wide- / 
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instruction issue by scheduling instructions from 
different threads in the same cycle. The new design 
prompts us to revisit compiler optimizations that 
automatically parallelize loops for enhanced memory 
performance and/or increase ILP. In this section we 
discuss two factors affected by SMT’s unique design, 
data sharing among threads and the availability of 
instruction issue slots, in light of three compiler 
optimizations they affect. 

Inter-thread data sharing 

Conventional parallelization techniques target 
multiprocessors, in which threads are physically 
distributed on different processors. To minimize cache 
coherence and inter-processor communication overhead, 
data and loop distribution techniques partition and 
distribute data to match the physical topology of the 
multiprocessor. Parallelizing compilers attempt to 
decompose applications to minimize synchronization and 
communication between loops. Typically, this is 
achieved by allocating a disjoint set of data for each 
processor, so that they can work independently 
[341[101[71. 

In contrast, on an SMT, multiple threads execute on 
the same processor, affecting performance in two ways. 
First, both real and false inter-thread data sharing entail 
local memory accesses and incur no coherence overhead, 
because of SMT’s shared Ll cache. Consequently, 
sharing, and even false sharing, is beneficial. Second, by 
sharing data among threads, the memory footprint of a 
parallel application can be reduced, resulting in better 
cache and TLB behavior. Both factors suggest a loop 
distribution policy that clusters, rather then separates, 
data for multiple threads. 

Latency-hiding capabilities and the availability 
of instruction issue slots 

On most workloads, wide-issue processors typically 
cannot sustain high instruction throughput, because of 
low instruction-level parallelism in their single, executing 
thread. Compiler optimizations, such as software 
speculative execution and loop tiling (or blocking), try to 
increase ILP (by hiding or reducing instruction latencies, 
respectively), but often with the side effect of increasing 
the dynamic instruction count. Despite the additional 
instructions, the optimizations are often profitable, 
because the instruction overhead can be accommodated 
in otherwise idle functional units. 

Because it can issue instructions from multiple 
threads, an SMT processor has fewer empty issue slots; 
in fact, sustained instruction throughput can be rather 
high, roughly 2 times greater than on a conventional 
superscalar [13]. Furthermore, SMT does a better job of 
hiding latencies than single-threaded processors, because 
it uses instructions from one thread to mask delays in 

another. In such an environment, the aforementioned 
optimizations may be less useful, or even detrimental, 
because the overhead instructions compete with useful 
instructions for hardware resources. SMT, with its 
simultaneous multithreading capabilities, naturally 
tolerates high latencies wifhollt the additional instruction 
overhead. 

4 Methodology 

Before examining the compiler optimizations, we 
describe the methodology used in the experiments. WC 
chose applications from the SPEC 92 [12], SPEC 95 [30] 
and SPLASH-2 [35] benchmark suites (Table 2). All 
programs were compiled with the Multiflow trace 
scheduling compiler [22] to generate DEC Alpha object 
files. Multiflow was chosen, because it generates high- 
quality code, using aggressive static scheduling for widc- 
issue, loop unrolling, and other ILP-exposing 
optimizations. Implicitly-parallel applications (the SPEC 
suites) were first parallelized by the SUIF compiler [IS]; 
SUIF’s C output was then fed to Multiflow. 

A blocked loop distribution policy commonly used 
for multiprocessor execution has been implemented in 
SUIF; because we used applications compiled with the 
latest version of SUIF [5], but did not have access to its 
source, we implemented an alternative algorithm 
(described in Section 5) by hand. SUIF also finds tilcablc 
loops, determines appropriate multiprocessor-oricntcd 
tile sizes for particular data sets and caches, and then 
generates tiled code; we experimented with other tilt 
sizes with manual coding. Speculative execution was 
enabled/disabled by modifying the Multiflow compiler’s 
machine description file, which specifies which 
instructions can be moved speculatively by the tract 
scheduler. We experimented with both statically- 
generated and profile-driven traces; for the latter, 
profiling information was generated by instrumenting the 
applications and then executing them with a training 
input data set that differs from the set used during 
simulation. 

The object files generated by Multiflow were linked 
with our versions of the ANL [4] and SUIF runtimc 
libraries to create executables. Our SMT simulator 
processes these unmodified Alpha executables and uses 
emulation-based, instruction-level simulation to model in 
detail the processor pipelines, hardware support for out- 
of-order execution, and the entire memory hierarchy, 
including TLB usage. The memory hierarchy in our 
processor consists of two levels of cache, with sizes, 
latencies, and bandwidth characteristics, as shown in 
Table 2. We model the cache behavior, as well as bank 
and bus contention. Two TLB sizes were used for the 
loop distribution experiments (48 and 128 entries), to 
illustrate how the performance of loop distribution 
policies is sensitive to TLB size. The larger TLB 
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Table 1: Benchmarks. The last three columns identify the 
studies in which the applications are used. (LD = loop distribution, 
SSE = software speculative execution, and T = tiling). 

Table 2: Memory hierarchy parameters. When there 
is a choice of values, the first (the more aggressive) represents a 
forecast for an SMT implementation roughly three years in the 
future and is used in all experiments. The second set is more 
typical of todays memory subsystems and is used to emulate 
larger data set sizes [29]; it is used in the tiling studies only. 

represents a probable configuration for a (future) general- 
purpose SMT; the smaller is more appropriate for a less 
aggressive design, such as an SMT multimedia co- 
processor, where page sizes are typically in the range of 

2-SMB. For both TLB sizes, misses require two full 
memory accesses, incurring a 160 cycle penalty. For 
branch prediction, we use a McFarling-style hybrid 
predictor with a 256-entry, 4way set-associative branch 
target buffer, and an SK entry selector that chooses 
between a global history predictor (13 history bits) and a 
local predictor (a 2K-entry local history table that 
indexes into a 4K-entry, 2-bit local prediction table) 1241. 

Because of the length of the simulations, we limited 
our detailed simulation results to the parallel computation 
portion of the applications (the norm for simulating 
parallel applications). For the initialization phases of the 
applications, we used a fast simulation mode that only 
simulates the caches, so that they were warm when the 
main computation phases were reached. We then turned 
on the detailed simulation model. 

5 Loop distribution 
To reduce communication and coherence overhead 

in distributed-memory multiprocessors, parallelizing 
compilers employ a blocked loop parallelization policy to 
distribute iterations across processors. A blocked 
distribution assigns each thread (processor) continuous 
array data and iterations that manipulate them (Figure 1). 
Figure 2 presents SMT speedups for applications 
parallelized using a blocked distribution with two TLB 
sizes. Good speedups are obtained for many applications 
(as the number of threads is increased), but in the smaller 
TLB the performance of several programs (hydroad, 
swim, and tomcatv) degrades with 6 or 8 threads. The S- 
thread case is particularly important, because most 
applications will be parallelized to exploit all 8 hardware 
contexts in an SMT. Analysis of the simulation 
bottleneck metrics indicated that the slowdown was the 
result of thrashing in the data TLB, as indicated by the 
TLB miss rates of Table 3. 

The TLB thrashing is a direct result of blocked 
partitioning, which increases the total working set of an 
application because threads work on disjoint data sets. In 
the most severe cases, each of the 8 threads requires 
many TLB entries, because loops stride through several 
large arrays at once. Since the primary data sets are 
usually larger than a typical SKB page size, at least one 
TLB entry is required for each array. 

The swim benchmark from SPECfp95 illustrates an 
extreme example. In one loop, 9 large arrays are accessed 
on each iteration of the loop. When the loop is 
parallelized using a blocked distribution, the data TLB 
footprint is 9 arrays * 8 threads = 72 TLB entries, 
excluding the entries required for other data. With any 
TLB size less than 72, significant thrashing will occur 
and the parallelization is not profitable. 

The lesson here is that the TLB is a shared resource 
that needs to be managed efficiently in an SMT. At least 
three approaches can be considered: (1) using fewer than 
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Figure 1: A blocked and cyclic loop disiibution example. 
The code for an example loop nest is shown in a). When using a blocked 
distribution, the code is structured as in b). The cyclic version is shown in c). On 
the right, d) and e) illustrate which portions of the array are accessed by each 
thread for the two policies. (For clarity, we assume 4 threads). Assume that each 
row of the array is 2KB (512 double precision elements). With blocked distribution 
(d), each thread accesses a different 8KB page in memory. With cyclic (e), 
however, the loop is decomposed in a manner that allows all four threads to 
access a single 8KB page at the same time, thus reducing the TLB footprint. 

Table 3: TLB miss rates. Miss rates are shown for a 
blocked distribution and a 4&entry data TLB. The bold entries 
correspond to decreased performance (see Figure 2) when the 
number of threads was increased. 

8 threads when parallelizing, (2) increasing the data TLB 
size, or (3) parallelizing loops differently. 

The first alternative unnecessarily limits the use of 
the thread hardware contexts, and neither exploits SMT 
nor the parallel applications to their fullest potential. The 
second choice incurs a cost in access time and hardware, 
although with increasing chip densities, future processors 
may be able to accommodate.’ Even with larger TLBs, 
however, it is desirable to reduce the TLB footprint on an 
SMT. A true SMT workload would be multiprogrammed: 
for example, multiple parallel applications could execute 
together, comprising more threads than hardware 
contexts. The thread scheduler could schedule all 8 
threads for the first parallel application, then context 
switch to run the second, and later switch back to the 
first. In this type of environment it would be performance- 
wise to minimize the data TLB footprint required by each 

‘We found that 64 entries did not solve the problem. However, a 128- 
entry data TLB avoids TLB thrashing, aad as Figure 2b indicates, 
achieves speedups, at least for the SPECfp95 data sets. 

application. (As an example, the TLB footprint of a 
multiprogrammed workload consisting of swim and 
hydro2d would be greater than 128 entries.) 

The third and most desirable solution relies on the 
compiler to reduce the data TLB footprint. Rather than 
distributing loop iterations in a blocked organization, it 
could use a cyclic distribution to cluster the accesses of 
multiple threads onto fewer pages. (With cyclic 
partitioning, swim would consume 9 rather than 72 TLB 
entries). Cyclic partitioning also requires less instruction 
overhead in calculating array partition bounds, a non- 
negligible, although much less important factor. 
(Compare the blocked and cyclic loop distribution code 
and data in Figure 1.) 
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Figure 2: Speedups over one thread 
for blocked oarallelization. 

Figure 3 illustrates the speedups attained by a cyclic 
distribution over blocked, and Table 4 contains the 
corresponding changes in data TLB miss rates. With the 
48-entry TLB all applications did better with a cyclic 
distribution. In most cases the significant decrease in data 
TLB misses, coupled with the long 160 cycle TLB miss 
penalty, was the major factor. Cyclic increased TLB 
conflicts in tomcatv at 2 and 4 threads, but, because the 
number of misses was so low, overall program 
performance did not suffer. At 6 and 8 threads, tomcatv’s 
blocked data TLB miss rate jumped to 2% and 1 I%, 
causing a corresponding hike in speedup for cyclic. 

Absolute miss rates in the larger data TLB arc low 
enough (usually under 0.2%, except for applu and su2cor, 
which reached 0.9%) that most changes produced little or 
no benefit for cyclic. In contrast, sdcor saw degradation, 
because cyclic scheduling increased loop unrolling 
instruction overhead. This performance degradation was 
not seen with the smaller TLB size, because cyclic’s 
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- - - only are instructions dynamically scheduled and 
speculatively executed by the hardware, but 
multithreading is also used to hide latencies. (As the 

Table 4: Improvement (decrease) in TLB miss 
rates of cyclic distribution over blocked. 

improved TLB hit rate offset the overhead. 

Figure 3: Speedup attained by-cyclic over blocked parallelization. For each application, the execution time for 
Aockecl is normalized to 1.0 for all numbers of threads. Thus, each bar compares the speeclup for cyclic over blocked with the same 
lumber of threads. 

Mgrid saw a large performance improvement for 
both TLB sizes, because of a reduction in dynamic 
instruction count. As Figures lb and Ic illustrate, cyclic 
parallelization requires fewer computations and no long- 
latency divide. 

In summary, these results suggest using a cyclic loop 
distribution for SMT, rather than the traditional blocked 
distribution. For parallel applications with large data 
footprints, cyclic distribution increased program 
speedups. (We saw speedups as high as 4.1, even with 
the smallish SF’ECfp95 reference data sets.) For 
applications with smaller data footprints, cyclic broke 
even. Only in one application, where there was an odd 
interaction with the loop unrolling factor, did cyclic 
worsen performance. 

In a multiprocessor of SMT processors, a cyclic 
distribution would still be appropriate within each node. 
A hybrid parallelization policy might be desirable, 
though, with a blocked distribution across processors to 
minimize inter-processor communication. 

6 Software speculative execution 

Today’s optimizing compilers rely on aggressive 
code scheduling to hide instruction latencies. In global 
scheduling techniques, such as trace scheduling [22] or 
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number of SMT threads is increased, instruction 
throughput also increases.) Therefore, the latency-hiding 
benefits of software speculative execution may be needed 
less, or even be unnecessary, and the additional 
instruction overhead introduced by incorrect speculations 
may degrade performance. 

Our experiments were designed to evaluate the 
appropriateness of software speculative execution for an 
SMT processor. The results highlight two factors that 
determine its effectiveness for SMT: static branch 
prediction accuracy and instruction throughput. 

Correctly-speculated instructions have no instruction 
overhead; incorrectly-speculated instructions, however, 
add to the dynamic instruction count. Therefore, 
speculative execution is more beneficial for applications 
that have high speculation accuracy, e.g., loop-based 
programs with either profile-driven or state-of-the-art 
static branch prediction. 

Table 5 compares the dynamic instruction counts 
between (profile-driven)2 speculative and non- 
speculative versions of our applications. Small increases 

‘We used profile-driven speculation lo provide ;I best-case comparison to 
SMT. Without profiles, more mispredictions would have occurred and 
more overhead instructions would have been generated. Consequently, 
software speculation would have worse performance than we report, 
making its absence appear even more beneficial for SMT. 

- , 



Table 5: Percentage increase in dynamic 
instruction count due to profile-driven software 
Spt?CUkItiVe t?XeCUtiOn. Data are shown for 8 threads. (One 
thread numbers were identical or very close). Applications in bold 
have high speculative instruction overhead and high IPC without 
speculation; those in italics have only the former. 

Table 6: Throughput (instructions per cycle) with 
and without profile-driven software speculation 
for 8 threads. Programs in bold have high IPC without 
speculation, plus high speculation overhead; those in italics have 
only the former. 

in the dynamic instruction count indicate that the 
compiler (with the assistance of profiling information) 
has been able to accurately predict which paths will be 
executed.3 Consequently, speculation may incur no 
penalties. Higher increases in dynamic instruction count, 
on the other hand, mean wrong-path speculations, and a 
probable loss in SMT performance. 

While instruction overhead influences the 
effectiveness of speculation, it is not the only factor. The 
level of instruction throughput in programs without 
speculation is also important, because it determines how 
easily speculative overhead can be absorbed. With 
sufficient instruction issue bandwidth (low IPC), 
incorrect speculations may cause no harm; with higher 
per-thread ILP or more threads, software speculation 
should be less profitable, because incorrectly-speculated 
instructions are more likely to compete with useful 
instructions for processor resources (in particular, fetch 
bandwidth and functional unit issue). Table 6 contains 
the instruction throughput for each of the applications. 
For some programs IPC is higher with software 

3.All the SPECfp95 progmms, mdix from SPLASH-Z and compress 
from SPECint95, nre loop-based; all have small increases in dynnmic 
instruction count with speculation. 
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c 
a) SPECfp95 

b) SPLASH2 and SPEC95 Int 

Figure 4: Speedups of applications executing 
without software speculation over with 
speculation (speculative execution cycles / no 
speculation execution CyClEi). Bars that are greater 
than 1 .O indicate that no speculation is better. 

speculation, indicating some degree of absorption of the 
speculation overhead. In others, it is lower, because of 
additional hardware resource conflicts, most notably Ll 
cache misses. 

Speculative instruction overhead (related to static 
branch prediction accuracy) and instruction throughput 
rogether explain the speedups (or lack thereof) illustrated 
in Figure 4. When both factors were high (the non-loop- 
based fft, li, and LU), speedups without software 
speculation were greatest, ranging up to 22%.4 If one 
factor was low or only moderate, speedups were minimal 
or nonexistent (the SPECfp95 applications, radix and 
water-nsquared had only high IPC; go, m88ksim and pcrl 
had only speculation overhead).5 Without either factor, 
software speculation helped performance, and for the 
same reasons it benefits other architectures -- it hid 
latencies and executed the speculative instructions in 
otherwise idle functional units. 

The bottom line is that, while loop-based 
applications should be compiled with software 
speculative execution, non-loop applications should bc 
compiled without it. Doing so either improves SMT 
program performance or maintains its current level -- 
performance is never hurtP 

4.For these applications (and a few others ns well), ns more threads arc 
used, the ndvnntnge of turning off speculation generally becomes even 
larger. Additional threads provide more parallelism, and therefore, spccu- 
lative instructions nre more likely to compete with useful instructions for 
processor resources. 



7 Loop tiling 
In order to improve cache behavior, loops can be 

tiled to take advantage of data reuse. In this section, we 
examine two tiling issues: tile size selection and the 
distribution of tiles to threads. 

If the tile size is chosen appropriately, the reduction 
in average memory access time more than compensates 
for the tiling overhead instructions [20][ 11][6]. (The code 
in Figures 6b and 6c illustrates the source of this 
overhead). On an SMT, however, tiling may be less 
beneficial. First, SMT’s enhanced latency-hiding 
capabilities may render tiling unnecessary. Second, the 
additional tiling instructions may increase execution 
time, given SMT’s higher (multithreaded) throughput. 
(These are the same factors that influence whether to 
software speculate.) 

To address these issues, we examined tileable loop 
nests with different memory access characteristics, 
executing on an SMT processor. The benefits of tiling 
vary when the size of the cache is changed. Smaller 
caches require smaller tiles, which naturally introduce 
more instruction overhead. On the other hand, smaller 
tiles also produce lower average memory latencies -- i.e., 
fewer conflict misses -- so the latency reducing benefit of 
tiling is better. We therefore varied tile sizes to measure 
the performance impact of a range of tiling overhead. We 
also simulated two memory hierarchies to gauge the 
interaction between cache size, memory latency and tile 
size. The larger memory configuration represents a 
probable SMT memory subsystem for machines in 
production approximately 3 years in the future (see 
Section 4). The other configuration is smaller, modeling 
today’s memory hierarchies, and is designed to provide a 
more appropriate ratio between data set and cache size, 
modeling loops with larger, i.e., more realistic, data sets 
than those in our benchmarks. For these experiments, 
each thread was given a separate tile (the tiling norm). 

Figure 5 presents the performance (total execution 
cycles, average memory access time, and dynamic 
instruction count for a range of tile sizes and the larger 
memory configuration) of an S-thread SMT execution of 
each application and compares it to a single-thread run 
(approximating execution on a superscalar [13]). The 
results indicate that tiling is profitable on an SMT, just as 
it is on conventional processors. Mxm may seem to be an 
exception, since tiling brings no improvement, but it is an 
exception that shows there is no harm in applying the 
optimization. Programs executing on an SMT appear to 
be insensitive to tile size; at almost all tile sizes 
examined, SMT was able to hide memory latencies (as 

‘Even though it has few floating point computations, water-spatial had a 
high 1PC without speculation (6.5). Therefore the speculative instructions 
bottlenecked the integer units, and execution without speculation was 
more profitable. 

adi 

dynamic inrtrudion count in millions 

8 threads 8 threads 8 threads 

Q-~Total execution cydes in millions 
WAverage memory acces time in cydes (AMAT) 

1 thread 1 thread 1 thread 
!O 

Q-~Total exeation cydes in millions 
FLVAverage memory access time in cydes (AhfAT) 

Figure 5: Tiling results with the larger memory 
subsystem and separate tiles/thread. AI] the 
horizontal axes are tile size. A tile size of 0 means no tiling; sizes 
greater than 0 are one dimension of the tile, measured in array 
elemer$ The vertical axes are metrics for evaluating tiling: 
dynamic mstruction count, total execution cycles and AMAT. 

indicated by the flat AMAT curves), while still absorbing 
iiling overhead. Therefore SMT is less dependent on 
static algorithms to determine optimal tile sizes for 
particular caches and working sets. In contrast, 
conventional processors are more likely to have a tile size 
sweet spot. Even with out-of-order execution, modern 
processors, as well as alternative single-die processor 
architectures, lack sufficient latency-hiding abilities; 
consequently, they require more exact tile size 
calculations from the compiler. 

Tile size is also not a performance determinant with 
the less aggressive memory subsystem (results not 
shown), indicating that tiling on SMT is robust across 
memory hierarchies (or, alternatively, a range of data set 
sizes). Execution time is, of course, higher, because 
performance is more dependent on AMAT parameters, 
rather than tiling overhead. Only adi became slightly less 
tolerant of tile size changes. At the largest tile size 
measured (32x32), its AMAT increased sharply, because 
of inter-thread interference in the small cache. For this 
loop nest, either tiles should be sized so that all fit in the 

6.Keep in mind that had we speculated without run-time support (the pro- 
filing), the relative benefit of no speculation (versus speculation) would 
have been higher. For example, at 8 threads water-nsquared breaks even 
with profile-driven speculation; however, relying only on Multiflow’s 
static branch prediction gives no speculation a slight edge, with a 
speedup of 1.1. Nevertheless, the general conclusions still hold: both 
good branch prediction and low multi-thread IPC are needed for software 
speculation to benefit applications executing on an SMT. 
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a) original 1009 
for (j = 1; j c N; j++ 

for (k = 1; k < L; k++) 
for (i = 1: i < M; i++l 

c(jltkl += alilIkl*b[jl[il; 

b) blocked tiling 
ub = min(N*(myid+ll/numthreads+l. N); 
lb = max(N*myid/numthreads+l. 1); 
for (jT=lb; jT e ub; jT+=jTsize) 

for (kT=l; kT <= L; kT+=kTsize) 
for (iT=l: iT < M; iT+=iTsize) 

for (j=jT; j <n min(N,jT+jTsize-l);j++) 
for lk=ma%(l. kT); 

k <= min(L,kT+kTsize-1); k++) 
for (iniT; i -c= min(M,iT+iTsize-l);i++) 

c(jl[kl += a[iltkl*b(jllil; 

c) cyclic tiling 
ub = min(N l (myid + l)/numthreads + 1, N): 
lb = maxIN l myid I numthreads + 1, 1); 
for (jT ii lb: jT c= ub; jT += jTsize) 

for (kT = 1; kT -c= L; kT += kTsize) 
for (iT = 1; iT < M: iT += iTsize) 

for (j P jT+myidi j c= min(N,jT+jTsize-1); 
j += runthreads) 

for (k=maxll, kT1; 
k c= min(L,kT+kTsize-1); k++) 

for (i=iT; i <= min(M,iT + iTsize-1); 
i++) 

c[jl[kl += aIillkl*btjllil; 

Figure 6: Code for blocked and cyclic 
versions of a tiled loop nest. J 

:ri 
below) 

tiling technique or an alternative 
should be used. 

(desc bed 

The second loop tiling issue is the distribution of 
tiles to threads. When parallelizing loops for 
multiprocessors, a different tile is allocated to each 
processor (thread) to maximize reuse and reduce inter- 
processor communication. On an SMT, however, tiling in 
this manner could be detrimental. Private, per-thread tiles 
discourage inter-thread tile sharing and increase the total- 
thread tile footprint on the single-processor SMT (the 
same factors that make blocked loop iteration scheduling 
inappropriate for SMT). 

a) blocked b) cyclic c) optimized cyclic 
i dimension i dimension i dimension 

Thread 0 
Thread 1 El 

Thread 2 
Thread 3 

figure 7: A comparison of blocked and cyclic tiling 
echniques for multiple threads. The blocked tfllng Is 
hown in a). Each tile is a 4x4 array of elements. The numbers 
epresent the order in which tiles are accessed by each thread. For 
yclic tiling, each tile is still a 4x4 array, but now the tile is shared by 
111 threads. In this example, each thread 
hown in b). With cyclic tiling, each lhrea % 

ets one row of the tile, as 
works on a smaller chunk 

d data at a time, so the tiling overhead is greater. In c), the tile size 
j increased to 8x8 to reduce the overhead. Within each tile, each 
nread is responsible for 16 of the elements, as In the original 
Ilocked example. 

Rather than giving each thread its own tile (called 
blocked tiling), a single tile can be shared by all threads, 
and loop iterations can be distributed cyclically across 
the threads (cyclic tiling). (See Figure 6 for a code 
explanation of blocked and cyclic tiling, and Figure 7 for 
the effect on the per-thread data layout). 

Because the tile is shared, cyclic tiling can be 
optimized by increasing the tile size to reduce overhead 
(Figure 7~). With larger tiles, cyclic tiling can drop 
execution times of applications executing on small 
memory SMTs closer to that of SMTs with more 
aggressive memory hierarchies. (Or, put another way, the 
performance of programs with large data sets can 
approach those with smaller.) For example, Figure 8c 
illustrates that with larger tile sizes (greater than 8 array 
elements per dimension) cyclic tiling reduced mxm’s 
AMAT enough to decrease average execution time on the 
smaller cache hierarchy by 51% (compare to blocked in 
Figure 8b) and to within 35% of blocked tiling on a 
memory subsystem several times the size (Figure Sa). 
Only at the very smallest tile size did an increase in tiling 

0- 
0 5 10 15 20 

0- 
0 5 10 15 20 

Dynamic instruction count in millions 

b) 
20 20 2 

10 10 

liiziii 

1 

0 0 
0 5 10 15 20 0 5 10 15 20 

~-0 Total execution time in millions of cycles 
- Avenge memory ncccss time in cycles (AhIATl 

Figure 8: Tiling performance of 84hread mxm 
Tile sizes are along the x-axis. Results are shown for a 
blocked tiling and the larger memory subsystem, b 
blocked tiling with the smaller memory subsystem, ant 
c) cyclic tiling, also with the smaller memory subsystem, 

overhead overwhelm SMT’s ability to hide memory 
latency. 

Cyclic tiling is still appropriate for a multiprocessor 
of SMTs. A hierarchical [8] or hybrid tiling approach 
might be most effective. Cyclic tiling could be used to 
maximize locality in each processor, while blocked tiling 
could distribute tiles across processors to minimize intcr- 
processor communication. 

8 Other compiler optimizations 

In addition to the optimizations studied in this paper, 
compiler-directed prefetching, predicated execution and 
software pipelining should also be re-evaluated in the 
context of an SMT processor. 

On a conventional processor, compiler-directed 
prefetching [26] can be useful for tolerating memory 
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latencies, as long as prefetch overhead (due to prefetch 
instructions, additional memory bandwidth, and/or cache 
interference) is minimal. On an SMT, this overhead is 
more detrimental: it interferes not only with the thread 
doing the prefetching, but also competes with other 
threads. 

Predicated execution [23][ 16][28] is an architectural 
model in which instruction execution can be guarded by 
boolean predicates that determine whether an instruction 
should be executed or nullified. Compilers can then use 
if-conversion [2] to transform control dependences into 
data dependences, thereby exposing more ILP. Like 
software speculative execution, aggressive predication 
can incur additional instruction overhead by executing 
instructions that are either nullified or produce results 
that are never used. 

Software pipelining [9][27][18][1] improves 
instruction scheduling by overlapping the execution of 
multiple loop iterations. Rather than pipelining loops, 
SMT can execute them in parallel in separate hardware 
contexts. Doing so alleviates the increased register 
pressure normally associated with software pipelining. 
Multithreading could also be combined with software 
pipelining if necessary. 

Most of the optimizations discussed in this paper 
were originally designed to increase single-thread ILP. 
While intra-thread parallelism is still important on an 
SMT processor, simultaneous multithreading relies on 
multiple threads to provide useful parallelism, and 
throughput often becomes a more important performance 
metric. SMT raises the issue of compiling for throughput 
or for a single-thread. For example, from the perspective 
of a single running thread, these optimizations, as 
traditionally applied, may be desirable to reduce the 
thread’s running time. But from a global perspective, 
greater throughput (and therefore more useful work) can 
be achieved by limiting the amount of speculative work. 

9 Related work 

The three compiler optimizations discussed in this 
paper have been widely investigated in non-SMT 
architectures. Loop iteration scheduling for shared- 
memory multiprocessors has been evaluated by Wolf and 
Lam [34], Carr, McKinley, and Tseng [7], Anderson, 
Amarasinghe, and Lam [3], and Cierniak and Li [lo], 
among others. These studies focus on scheduling to 
minimize communication and synchronization overhead; 
all restructured loops and data layout to improve access 
locality for each processor. In particular, Anderson et al., 
discuss the blocked and cyclic mapping schemes, and 
present a heuristic for choosing between them. 

Global scheduling optimizations, like trace 
scheduling [22], superblocks 1251 and hyperblocks [23], 
allow code motion (including speculative motion) across 
basic blocks, thereby exposing more ILP for statically- 
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scheduled VLIWs and wide-issue superscalars. In their 
study on ILP limits, Lam and Wilson [I91 found that 
speculation provides greater speedups on loop-based 
numeric applications than on non-numeric codes, but 
their study did not include the effects of wrong-path 
instructions. 

Previous work in code transformation for improved 
locality has proposed various frameworks and algorithms 
for selecting and applying a range of loop 
transformations [14][33][6][17][34][7]. These studies 
illustrate the effectiveness of tiling and also propose 
other loop transformations for enabling better tiling. 
Lam, Rothberg, and Wolf [20], Coleman and McKinley 
1111, and Carr et al., [6] show that application 
performance is sensitive to the tile size, and present 
techniques for selecting tile sizes based on problem-size 
and cache parameters, rather than targeting a fixed-size 
or fixed-cache occupancy. 

10 Conclusions 

This paper has examined compiler optimizations in 
the context of a simultaneous multithreading architecture. 
An SMT architecture differs from previous parallel 
architectures in several significant ways. First, SMT 
threads share processor and memory system resources of 
a single processor on a fine-grained basis, even within a 
single cycle. Optimizations for an SMT should therefore 
seek to benefit from this line-grained sharing, rather than 
avoiding it, as is done on conventional shared-memory 
multiprocessors. Second, SMT hides intra-thread 
latencies by using instructions from other active threads; 
optimizations that expose ILP may not be needed. Third, 
instruction throughput on an SMT is high; therefore 
optimizations that increase instruction count may degrade 
performance. 

An effective compilation strategy for simultaneous 
multithreading processors must recognize these unique 
characteristics. Our results show specific cases where an 
SMT processor can benefit from changing the compiler 
optimization strategy. In particular, we showed that (1) 
cyclic iteration scheduling (as opposed to blocked 
scheduling) is more appropriate for an SMT, because of 
its ability to reduce the TLB footprint; (2) software 
speculative execution can be bad for an SMT, because it 
decreases useful instruction throughput; (3) loop tiling 
algorithms can be less concerned with determining the 
exact tile size, because SMT performance is less sensitive 
to tile size; and (4) loop tiling to increase, rather than 
reduce, inter-thread tile sharing, is more appropriate for 
an SMT, because it increases the benefit of sharing 
memory system resources. 
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