
Putting Pointer Analysis to Work *

Rakesh Ghiya and Laurie J. Hendren
School of Computer Science, McGill University

Mont&l, &&bec, CANADA H3A 2A7
(ghiya, hendren}Qcs .mcgill . ca

(514) 398-4657/398-7391

Abstract
This paper addresses the problem of how to apply pointer

analysis to a wide variety of compiler applications. We are
not presenting a new pointer analysis. Rather, we focus
on putting two existing pointer analyses, points-to analysis
and connection analysis, to work.

We demonstrate that the fundamental problem is that
one must be able to compare the memory locations
read/written via pointer indirections, at different program
points, and one must also be able to summarize the ef-
fect of pointer references over regions in the program. It is
straightforward to compute read/write sets for indirections
involving stack-directed pointers using points-to informa-
tion. However, for heap-directed pointers we show that one
needs to introduce the notion of anchor handles into the
connection analysis and then express read/write sets to the
heap with respect to these anchor handles.

Based on the read/write sets we show how to extend tra-
ditional analyses like common subexpression elimination,
loop-invariant removal and location-invariant removal to in-
clude pointer references. We also demonstrate the use of
our information on more advanced techniques such as array
dependence testing and program understanding. We have
implemented our techniques in our McCAT C compiler, and
we demonstrate examples of applying our methods on a set
of pointer-intensive C benchmarks, as well as present con-
crete empirical data on the improvements achieved.

1 Introduction and Motivation
Pointer analysis has recently been a subject of active re-

search. This paper focuses not on a new pointer analysis,
but rather on how the results of two existing pointer analy-
ses can be used for a wide variety of compiler applications.
That is, once the relationships between pointers are com-
puted, what can we do with it? How do we put pointer
analysis to work?

This work supported by NSERC and FCAR.

Pemtission to mske digitnl.?l/hsrd copies of sli or part of thii material for
personal or clnssroom use is granted witbout fee provided that the copies
are not made or distributed for profit or commercial advantage, tbe copy-
right notice, tbe title of the publication snd its date appear, .and notice is
given tbnt copyright is by permission oftbe ACM. Inc. To copy otherwise.
lo republish. to post on servers or to redistribute to Iii requires specific
permission md/or fee.
PCPL 98 San Diego CA USA
Copyright 1998 ACM O-X9791-9793/98/01..S.50

121

A variety of effective techniques have been proposed to
estimate pointsto or alias relationships for C [6, 10,19,26,
29, 31,33, 351. A common feature of all these techniques
is that they approximate relationships between named ob-
jects. For objects that are on the stack, the appropriate
variable names are used, while dynamically-allocated ob-
jects are handled by associating them to some set of static
names. ’ This approach, where all memory locations are
named, has several advantages. Firstly, the same analy-
sis can be used for pointers to stack objects (staclc-directed
pointers) and pointers to heap objects (heap-directedpoint-
ers). Secondly, since names are static, it is quite simple
to use the information in subsequent compiler analyses.
However, treating the heap as a static set of named lo-
cations can also lead to signihcant imprecision [s], and sub-
stantial improvements in accuracy can be achieved when
special heup analyses are used for heap-directed point-
ers [S, 9, 12, 13, 16, 271. These approaches have focused
on using d&rent kinds of abstractions in order to get more
precise or richer descriptions about the relationships be-
tween heap-directed pointers. However, a question remains
about how to use the information provided by these analy-
ses in subsequent compiler transformations-

Our approach has been to handle the stack and heap
problems separately. We fnst resolve all pointer relation-
ships on the stack nsing a store-bosedpoints-to analysis [lo],
which abstracts all heap locations as a single symbolic lo-
cation called heap. All pointers reported to be pointing to
heap are then further analyzed via a hierarchy of storeless
heap analyses, connection analysis [12], and shape anoly-
sis [13]. The focus of this paper is to examine how the
combination of points-to analysis and connection analysis
can be used to compute information that can be used for
a wide range of compiler applications. Connection analysis
was chosen because it is a relatively simple type of store-
less analysis that does not give names to all heap locations.
Thus, it demonstrates the problems in nsing the results of a
storeless analysis, and yields interesting results when “put
to work” propedy. The main contributions of this paper
are as follows.
Computing read/write sets based on a store-
less pointer analysis: Computing the set of locations

‘The simplest solution is to use only one name called heap,
while more accurate solutions use some variant of malloc sites
(i.e. associate each malloc site in the program with a name).

read/written by a statement or program block is relatively
simpte when based on a store-based analysis [6, 201. We
aIs0 provide a brief description in Section 2.1. However,
for a storeless anaIysis like connection analysis, a central
problem is that even though one has fairly accurate infor-
mation at each program point, one does not have static
names for heap locations, and thus it is difficult to relate
information known at one program point to information
known at another program point. Further, it is not im-
mediately obvious how to summarize the information for
many program points (i.e. summarize the &ect of a func-
tion body). Our solution is to create just enough names for
heap objects, called anchor handles, so that we maintain
the advantages of a storeless analysis, and at the same time
we can use the information about these named anchor han-
dles to relate different program points, and to summarize
effects over many program points. We have implemented a
connection anaIysis augmented with anchor handles, and a
subsequent analysis that computes read/write sets relative
to those handles.
Applications based on read/write sets: Based on
read/write sets, we demonstrate how to use the informa-
tion for a wide variety of applications including: (1) ex-
tending standard scaIar compiler transformations, Iike loop-
invariant removal, location-invariant removal, and com-
mon subexpression elimination, to include pointers refer-
ences; {2) providing improved input to array dependence
testers; and (3) providing summary information that is use-
ful for program understanding, dynamic compilation [2] and
prefetching of pointer data structures 1243.
Implementations and EmpiricaI studies: We have im-
plemented our techniques in the McCAT compiler, and we
present empirical data to illustrate the costs and benefits
of the techniques. By performing source-to-source scalar
transformations based on our read/write sets, we demon-
strate up to 10% performance improvement over gee -03.
For array dependence testers we show significant improve-
ments with pointer read/write sets, and we demonstrate
the use of our read/write sets for program understanding
via a tool that produces output that can be browsed via
Web browsers. Thus, we feel that we have demonstrated
many practical applications of pointer analysis.

The paper is organized as follows. In Section 2, we
present the necessary background for pointsto analysis and
connection analysis, and discuss how to compute read/write
sets based on both analyses. In Section 3 weiIIustrate scalar
optimizations and discuss other applications of read/write
sets. We summarize related work in Section 4, and in Sec-
tion 5 we draw conclusions and discuss future work.

2 Foundations
Our main goal is to identify the set of locations

read/written by a given statement or program region. Con-
sider the smaII program fragment in Figure 1. For state-
ment S it is straightforward to compute that Read(S) = {y’,
z) and Write(S) = (x}. However, statements T and D in-
volve indirect references and using the simple syntax-based
approach above gives Read(T) = {q, *d, Write(T) = ip),
and Read(U) = (q, y), Write(U) = {*Q). This informa-
tion is not sufficient to correctly identify interstatement
dependencies. For example, Read(T) may conflict with

122

Write(S), as the indirect reference *q can potentially access
the same location as the variable x. Similarly, Write(U)
may not conflict with Read(T), as the target of pointer q
can change between the two statements. Thus in order to
relate the read/write sets of statements involving indirec-
tion with those of other statements, one needs to resolve
indirect references into a set of static locations. In the next
two sections we outline the methods for accurately comput-
ing read/write sets using points-to analysis and connection
analysis.

s: x = y + 2;
T: p = *q;

. . .
u: *q = y;

Figure 1: Example for Read-Write Sets

2.1 Points-to Analysis and Read/Write
Sets

Points-to anaIysis is a stored-based pointer analysis i.e. it
specifically relies on the fact that alI pointer targets have a
compile-time name. It calculates pointer targets in terms of
program point specific points-to triples of the form (x, y,D)
or (x,y,P). The triples respectively denote that the vari-
able x definitely/possibly contains the address of the loca-
tion corresponding to y. Symbolic names are generated for
pointer targets outside the scope of the current procedure.
Since heap locations are inherently anonymous, they arc
-abstracted as one symbolic stack location called heap.

The detded description of our context-sensitive inter-
proceduraI points-to analysis can be found in [lo]. Here
we simply illustrate it using the small code fragment shown
in Figure 2. At program point C we have the points-to
triples (s , ptA, Dl and (t , ptB, D>, which get respec-
tively mappedas (c, i-c, Dl and (d, l-d, Dl at the en-
try of function sum (program point U). Note that i-c and
14. are symbolic locations generated to represent ptA and
ptB (local to main) inside function sum. Based on this in-
formation, the read/write sets for statements U and V, and
for the entire function sum can be easily computed a~:

Read(U) = {c, d, Lc.x, 1-d-y) Write(U) = {Lc.x}
Read(V) ,= {c, d, Lc.y, l-&x) Write(V) = (I-c. y}
Read(sum) = {c, d, I-c.x, Lc.y, 1A.x. Ld.y}
Write(sum) = {Lc.x, 1r.y)

?hom this information, inter-statement dependencies for
the function sun can be easily detected. Finally, the
read/write sets for the function call to sum at program point
c are computed by unmnpping the read/write sets for the
function sun, giving the Following information:

Read(C) = {s, t, ptA.x, ptA.y, ptB.x, ptB.y}
Write(C) = <ptA.x, ptA.y)

‘Now consider the program pojnt D. Here we have the
points-to triples (s, heap, P> and (t, heap, P>, which
get mapped as (a, heap, Pl and (b, heap, Pl at the
entry of function flip. With this information, we get
very conservative read/write sets: Read(S) = Write(S) =

._. - - _. ---_ -_-z- --_r,r . ..-. -. _ _... 7-n .,...._... *..,_ I._ 2-Y r- .,-. > .--7 --l-’

typedef struct point
{ double x;

double y ;
struct point *next:

)Point ;

void flip(Point *a, Point *b)
/* a-gets the reflection of b */
(S: a->x = b->y;

T: a->y = b->x;
3
void sun(Point *c, Point *d)
C U: c->x = c-)x + d->y;

v: c->y = c->y + d-)x;
3

Figure 2: Example for Connection-based Read-Write Sets

void main0
{ Point *s, *t, ptA, ptl3;

int y;
s = %ptA;
t = &ptB;

c: sum(s, t);
s = allocgoint 0 ;
t = allot-point0 ;

D: flip(s, t);
E: y = s-)x;

3

connect(P) = { (d,e) / conn=W) = I @A, WA (es) I
Figure 3: Snapshots and related connection information

Read(T) = Write(T) = {heap}, which indicate a false de-
pendence between S and T. To obtain sharper read/write
information for heap-directed pointers, we further perform
a heap analysis called connection analysis, described below.

2.2 Connection Analysis and Read/Write
Sets

Connection analysis is a storeless heap pointer a&y-
sis, i.e., instead of explicitly computing the potential tar-
gets of a pointer, it computes connection relationships be-
tween pointers. It is performed after points-to analysis,
and focuses only on pointers reported to be heap-directed
by points-to analysis. Two heap-directed pointers are con-
nect& if they possiHy point to heap objects belonging to
the same data structure. They are not connectedif they
de$nitely point to objects belonging to disjoint data struc-
tures. Figure 3 demonstrates a snapshot of a typical stack
and heap at some program point P, and then another snap-
shot after executing the statement n = d->next (program
point P’). Below the snapshots we give the connection re-
lationships that hold at each point. First consider program
point P. At this point there are five pointer variables that
are heap-directed. Variables a and b point to disjoint ar-
rays, and so they are not connected. Variables c, d and
e point to various Iinhed-list nodes. In this case only d
and e point to the same data structure, and so they are
the only variables that are connected. Thus, a valid con-
nection set at P is ((d, e)). After executing the statement
n = d->next, n must be connected to aII handles that were
previously connected to d. Thus, a valid connection set at

123

P’ is {(d, e), (n, d), (n, e)}. Note that it is the negative in-
formation that is reaUy usefuI. For example, the pair (a, b)
is not in the set of connection relationships, so any oper-
ation on array a must be distinct from any operation on
array b. SimiIarly any access to the Iist pointed to by c
must be distinct fkom any access to the list pointed to by
d. Also, note that connection reIationships are given only
in terms of program variables, and the actual objects in the
heap are not given any names. Thus, even though the nodes
of aII the lists may have been allocated by the same static
malloc site, connection analysis can determine that the Ii&
are disjoint. Connection analysis is a context-sensitive in-
ter-procedural analysis, and its detailed description can be
found in [12].

2.2.1 Difficulties in computing read/write sets
based on connection analysis

Smce connection analysis is storekss, it is difficuh to
relate connection information at different program points.
Consider again the function flip in Figure 2. At call-site
D of function flip, pointers s and t point to disjoint heap
objects and are not connected. Consequently, at the en-
try to flip parameters a and b are not connected, and
they remain disconnected over the entire function body (no
statement connects them). Suppose we want to summarize
the locations read and written relative to the parameters a
and b. Based on the connection information we may deduce
that the sets Write(S) = {a->x}, and Read(T) = {b-)x}
do not conflict, as a and b point to disjoint objects at both
SandT.

void tricky-flip(a,b)
Point *a; Point *b;
C Point *tmp;

S: a->x = b->y;
/* saap a and b */
tnp = a; a = b;
b = tmp;

T: a->y = b->x;

’ [a) trickyflip (b) program point S, connect(S) = {}

Figure 4: Tricky Example

(c) program point T, connect(T) = {I

However, such simplistic solutions do not suffice. Con-
sider the function, trickyflip, given in Figure 4(a). As ii-
lustrated in Figures 4(b) and 4(c), the pointer values stored
in a and b change. Thus, even though a and b are not con-
nected at point S, and also not connected at point T, there is
a ftow dependence since a->x at point S is the same location
as b-)x at point T.

2.2.2 Dropping Anchors

The fundamental problem in the trickyflip example
is that we don’t have enough names for heap objects. The
same programmer-defined name may refer to different ob-
jects at different program points. The solution is to invent
enough new names, anchor handles, so that further analy-
ses can be done simply, based on information relative to the
anchor handles. Codsider a new version of trickyflip as
given in Figure 5. In this example, we have introduced
the names a@trickyflip and batrickyflip which an-
chor the parameters, and we have introduced a@S, which
is an anchor for variable a at program point S. Anchor han-
dles are given their initial values by introducing ghost copy
statements. AII anchors for parameters are copied at the
beginning of a function body, while program-point-specific
anchors of the form a@S are copied at the given program
point S.2 Although we have shown these as part of the pro-
gram, in fact, the anchors and ghosts are only implemented
in the connection analysis, and the actual program is not
modified.

Anchor handles serve as “anchor points” for analy-
sis within the body of a function. Informally, we can
now compute the read/write sets with respect to heap
related indirect references by noting that an anchor han-
dle x8p is read/written each time any pointer connected
to xap is read/written. For example, as ilhrstrated
in Figure 5, at statement S, a is connected with an-
chors aQtrickyflip and aOS, and so we would indicate
that writing a->x actually writes to the anchored loca-
tions a@trickyfl.ip->x and a@+>x giving HeapWrite
= (a&rickyflip->x, a@+>xj. SimiiarIy, at statement
T, b is also connected with anchors a@trickyflip and
aOS, so the read b->x actually reads the anchored loca-
tions a@trickyflip->x and a&S->x giving HeapRead =
{a&rickyflip->x, a&S->x). Comparing the sets Heap-
Write(S) with HeapRead(one can detect the flow de-
pendence from S to T.

2For the sake of clarity we do not include other anchors like
b@S and a@T in this example.

124

We can also collect heap read/write sets with respect to
function parameters in terms of their anchors. In our cx-
ample, for the function trickyflip, we have the following
information:

HeapWrite(trickyJIip) = HeapRead(tricky-flip) =
{a@trickyflip->x, b@trickyflip->yj

This function level information could be used to determine
that at the entry of function trickyflip: (1) it might
be useful to prefetch a-)x and b->y, but one should not
prefetch b->x and a->y; and (2) there are no updates to
the next field of either a orb, and thus tricky-flip does
not change the “listness” of any data structure.

2.2.3 Introducing Anchor Hmdles into Con-
nection AnaIysis

Introduction of too many anchor handles can afTect tho
efficiency of connection analysis. Hence identifying the pro-
gram points where anchor handles need to be introduced,
and selecting the locations to be anchored, is an important
issue.

In our implementation, for each function in the progrm,
anchor handles are generated for each: (i) heap-directed for-
mal parameter, (ii) heapdirected global pointer accessed in
the function, (iii) call-site that can read/write a heap loca-
tion, and (iv) heap-related indirect reference in the function
body (*p is considered heap-related if the entry (p, heap, P)
is in the points-to set at the given program point). Tha
first two types of anchor handles are introduced to com-
pute heap read/write sets for the entire function (in Fig-
ure 5 the handles aOtrickyflip and bOtrickyllip fall
into this category). Call-site anchor handles are used to
compare heap read/write sets of a function call with those
of otht statements. To include anchor handles in the con-
nection an$ysis, ghost copy assignments are perforincd at
function entry points and at all indirect references to the
heap. Note that the points-to information about which in-
direct references/function calls can access the heap, enables
us to reduce the number of anchor handles generated.

We use extended SSA numbers [21] to further rcducc
the number of anchor handles required. Although concep-
tually one requires a new anchor handle for each indirect
reference to the heap, in fact, anchor handIes can often be
reused. For example, in the program in Figure 5, the an-
chor a@trickyflip can also be used as the anchor aOS,
because they anchor the same location: pointer a has not
been updated between-the program points the two ban-
d&es are created. Thus, the same handle can be used to

void tricky-flip(a,b)
Point *a; Point *b;
{ Point *tmp;

Point *aQtricky,flip,
*bQtricky,f lip,
aQS; / anchors */

aQtricky_flip = a; /* ghost */
betricky-flip = b; /* ghost */
aW = a; /* ghost */

S: a->x = b->y;
/* swap a and b */
tmp = a; a = b; b = tmp;

T: a->y = b-)x;
3

(a) trickyflip

aetricky-flip
betricky-flip

connect(S) = {(a, a@tric&flip), (b, b@trickyJZip),
(a, aOS), (a@& a&-icky-flip)}

(b) program point S,

“m‘.._ 1 -- -
a@tricky_flip
b@tricky-flip

connect(T) z{(b, a@tricky$ip), (a, b@tricky-flip),
(b, a@S), (a&9, a@tricky-flip)}

(c) program point T

Figure 5: Dropping Anchors and Inserting Ghost Copy Statements
anchor all indirect references involving a given definition
of a pointer. Our extended SSA numbering associates a
new primary SSA number to a variable (inchrding point-
ers), whenever it is potentially updated (inchuhng indirect
updates). Thus, when we generate an anchor handle for
a pointer ptr, we also associate its current SSA number k
with the handle. If an anchor handle for ptr with the SSA
number k already exists we do not generate a new one, and
reuse the existing one for the given indirect reference too.

In subsection 2.1, we briefIy illustrated how stack
read/write sets are computed for function calIs using map
information from points-to analysis. Heap read/write sets
for function calls, are also computed using the map informa-
tion deposited by connection analysis, which is a context-
sensitive inter-procedural analysis. It generates special sym-
bolic names to represent heap pointers which are invisible
in the cahee procedure, but whose connection relationships
can still be modified by it.

Consider again the caU to function flip in Figure 2. Due
to parameter passing, the cab generates the connection re-
Iationships: ra,s,l and (b, t). However, as the names s and
t are not visible to the fiznction flip, connection anaIysis
maps them to special symbolic names O+a and O+b, gen-
erating the connection relationships (a,O+a) and (a,O+b).
Now the ghost copy statements at the entry to flip wiII
generate the connection pairs: (a@jIip,O+a), @@jlip,O+b)
in addition to the pairs (a@Jip,a) and (b@jIip,b). The heap
read/write sets for function flip in terms of the parameter
anchors will be as follows:

HeapFtead(fIip) = {bQf lip->y , bQf lip->x}
HeapWriteQIip) = (aoflip->x, aDflip->y)

On unmapping, connection analysis has the information
that: (i) s is mapped to O+a, (ii) O+a is connected with
the anchor a@f lip, and (iii) aOf lip->x and a@f lip->y are

in the set HeapWrite(fIip). prom these facts, it deduces
that in the context of function main, the anchored loca-
tions SOD->x and SOD->y are written by the caU to flip at
program point D. Similarly for pointer t it deduces that the
locations t@D-lx and MD->y are read by the cab. In our
implementation, we do not generate an anchor for each ar-
gument to a call. Instead we generate just two handles,
rdimchor0D and wrt~chor@D to respectively represent
read and write anchors, and express read/write sets with
respect to them, giving the foIlowing sets for the caII to
flip:

HeapFtead(D) = {rd.anchorQD->x, rd-anchor@D->y)
HeapWrite = {wrtzmchor@D->x, wrtanchor@D->y}

Additionally, we perform the ghost copy assignments,
rd_anchorQD = t and wrt_anchorQD = s, after the func-
tion call is processed. Due to these assignments, at state-
ment E in function main (E: y = s-)x), we wivill find s con-
nected with sn%anchorOD, and hence cau detect that state-
ments D and E con&t. Thus the main idea is that instead of
creating an anchor for each pointer with respect to which
the function caII can access the heap, we just create two
anchors to represent aII the needed anchors. Further im-
plementation details about anchor-augmented connection
analysis can be found in [ll].

2.2.r Analysis Efficiency

We have evaluated the efficiency of our anaIyses with re-
spect to a set of 12 C benchmark programs, drawn fmm
the SPECD2, SPLASH-2 [34], Olden [25], Irvine [IS] and
Wisconsin [3] benchmark suites. A brief description of the
benchmarks is provided in TabIe 1. The table also summa-
rizes the principal data structures used by the benchmarks.
Here S-Array denotes a statically allocated array, D-Array

125

1 RP 11 Description 1 Data Structures

_-
I

vor I] Voronoi Diagrams] Splay ‘IIee & Lists
oower I] Power Outimization 1 k-ary ‘Ikee _

I nrcode2 II Vector C benchmark I D-Arrays I
blocks2 Comput. Siology D-Arrays & Lists
sim Comput. BioIogy D-Arrays & Lists
ejgen Eigenvalues D-Arrays

Table 1: Benchmark Descriptions

denotes a dynamically allocated array, and D-linked list de-
notes a doubly-linked list.

I Prrm 11 NS 1 SR 1 HR 1 AA 4 PT] CT]
, - L

is 1 11 652 1 44 1 90 0.68 0.59 0.58
vor 63 t 479

1 1 1
1 0.50 1 2.87 1 2.59

Table 2: Analysis Statistics

in Table 2 we provide the analysis times measured on an
UltruSparc machine in seconds. The points-to and connec-
tion timings (PT and CT) respectively include the addi-
tional time spent in computing stack and heap read/write
sets. The table also provides the following information for
each program: (i) number of SIMPLE statements (NS), (ii)
number of stack and heap related indirect references (SR
and HR), and (iii) the average number of anchor handles
generated per indirect reference (AA). An interesting ob-
servation is that our context-sensitive pointer analyses are
quite efficient for moderate size benchmarks. This indi-
cates that if interesting sections of larger programs can be
identified using linear analyses [29, 31], precise informa-
tion for these sections can be obtained efficiently. We are
presently experimenting with this approach to efficiently

126

analyze large prog&ns. Another observation is that the
average number of anchor handles generated per indirect
reference is about 0.50 for most of the benchmarks. This
indicates that by using SSA numbers, we reduce the number
of.&chor handles needed by almost 50%.

3 Applications

We have used our implementation of stack and heap
read/write set analyses as the basis for extending several
standard scalar compiler optimizations like loop-invtiant
removal (LIR) and global common sub-expression elimi-
nation (CSE), and for more advanced compiler applica-
tions like array dependence testing. We have also built
a program-understanding tool, that &spIays the summary
read/write information to the user via Web browsers. In the
following sections we assume that we are working with the
‘SIMPLE representation of a C program using the McGAT
compiler [15].

3.1 Scalar Optimization-s

We have used the algorithms from [l] to implement tho
LIR and CSE optjtizations. Our implementation is more
powerful due to improved read/write information. Further,
it extends these optimizations to include read pointer cx-
pressions, globals and address exposed variables (variables
whose address has been taken). The latter two are included
because they cannot b®ister-promoted in the absence of
alias jnformation.

We have also implemented another optimization we call
location-invariant removal (LclR), which is simiiar in spirit
to the scalar replacement technique proposed for array rcf-
erences [+I]. Any memory reference that accesses the same
memory location in all iterations of a loop is considered to
be location invariant. For example, the pointer access r->i
in Figure 6(a) is location invariant as the origin pointer r
is’ not written inside the loop. We can replace all accesses
to r->i w2.h a scalar, say tr, as shown in Figure 6(b). To
safelyperform location invariant removal, we check that all
memory references in the loop that can access the given
location, are syntactically equivalent to the given location
invariant reference. For example, in Figure 6(a), if p->i
can access the same location as r->i, LcIR cannot be pcr-
formed.

Fin&y, when moving a pointer reference for loop or lc+
cation invariant removal, we guard the invariant statements
with the loop condition when necessary, in order to pro
serve program semantics (example in Figure 7(d)). Further
implementation details for the above optimizations can be
found in [II].

tr = r->a;
tlhile (p != IJULL) while (p != NULL)
(S: r-X = r->i + p-M; { s: tr = tr + p-H;

T: p = p->next; T: p = p->next;
3 3

r->i = tr;
(4 P4

Figure 6: Location Invariants

.
3.2 Experimental Results for Scalar Opti-

mizations

In this subsection, we study the experimental results ob-
tained by applying the above three optimizations to a suite
of 12 pointer intensive C benchmarks programs briefly de-
scribed in Table 1 (first 12 entries). We have collected both
static (compile-time) and dynamic (runtime) statistics.

First, we present the compile-time data, which indicates
the applicability of a given optimization for a program when
using both the stack and heap read/write sets (Section
3.2.1). We then examine how many of these optimization
opportunities are due to the presence of heap read/write
sets (Section 3.2.2). Fir&y, we provide runtime measure-
ments to measure the ultimate benefit of our read/write sets
for decreasing the number of memory accesses, decreasing
the number of instructions executed, and decreasing the
running time of optimized programs (Section 3.2.3).

3.2.1 Optimieations applied with stack aud
heap read/write sets

Our first experimental results report how many oppor-
tunities arise for our scalar optimizations, when run with
both the stack and heap read/write sets available. The
purpose of this data is to demonstrate the types of opti-
mizations possible, and to show that a significant number
of opportunities arise in pointer-intensive benchmarks.

In Table 3, the three multicolumns respectively give the
number of times the three optimizations: loop-invariant re+
moval (Loop Invars), location-invariant removal (Lot In-
vars) and common subexpression elimination (CSE), are
applied for a program. Each multicolumn is further divided
into several labeled cohnnns, which give the data for differ-
ent types of expressions. The denotations for labels are as
follows: (i) gl: global variables, (ii) ae: address exposed
variables, (iii) addr: address calculations of the form &aEil
or 9 (a->f ield) , (iv) ind: indirect references (*a, a->f ield,
a [i] where a is a pointer), simple array references (aCi1
where a is not a pointer), and simple component references
(a.f ield), and (v) expr: expressions involving computation
(lhs = op scalar, lhs = scalar-l op scalar2). Note
that location invariant optimization is not applicable for
expressions involving address calculations or computation.

For several benchmarks globals and address exposed vari-
ables contribute significantly to the number of loop invm-i-
ants (water, speceor and yacr2). AU these benchmarks use
a number of global variables which are initialized only once
in the program (at the beginning), and so are invariant for
most of the loops. Our loop-invariant algorithm replaces
them with temporaries which can be register allocated. Fig-
ure 7(a) shows an example from the speceur benchmark
where the global variable Earlengthis substituted with the
temporary tempinvar-19.

A significant number of loop-invariant address calcula-
tions are found for the benchmarks water, health, graph-
ica, nbody and yocr2. They typically arise due to accesses
to arrays embedded inside (heap allocated) structures. An
example from the nMybenchmark is shown in Figure 7(b).

Invariant indirect references (indcolumn) are found in all
the benchmarks (being pointer intensive). They typically
arise in nested loops, where the outer loop is traversing the

nodes of a recursive data structure, and the inner loop op-
erates on the node itself. Indirect references with respect
to the node in the inner loop provide opportunities for in-
variant detection. An example from em&i is shown in Fig-
ure 7(c) where we find three indirect references with respect
to the pointer nodelist, invariaut for the inner loop.

We also lind signiiicant number of expr invariants. It
might seem that such invariants can be identified even with-
out pointer analysis, as they only involve scalars. However,
the scalars could be defined inside the loop, and these def-
initions may involve pointer expressions, which have to be
first detected to be invariant.

We fiudlimited applications of location-invariant removal
in onr benchmarks. However, they prove to be critical in
the dynamic context. Opportunities for location invariant
removal arise mainly due to summation/reduction opera-
tions. Typical examples include : (i) storing up the sum of
all node values in the header node, and (ii) an inner loop
storing the sum of its node values, to the current outer loop
node. Figure 7(d) shows a loop from the aluinn benchmark
where location invariant optimization is applied.

CSE optimization finds numerous applications in all our
benchmarks, particularly for address calculations and indi-
rect references. To give further insight, we show represen-
tative example applications of CSE from different bench-
marks in Figure 8. Part(a) shows a loop from water where
repeated array address calculations are eliminated. Part(b)
shows a loop from health. Here the loop pointer is list,
however each loop iteration accesses fields of the heap ob-
ject pointed to by the pointer (*list) .patient. With CSE
optimization, we compute this pointer only once for each it-
eration, as opposed to once for every field access (as in the
original program). Part(c) shows a loop from the bench-
mark circuit. Here the pointer expression (*ch) .ncolH is
common for the loop test and the statement advancing the
loop pointer ch. With CSE optimization we compute the
expression only once per iteration, as opposed to twice. Fi-
nally part(d) shows a code fragment from a loop in uor
where a pointer expression calculated for parameter pass-
ing is reused later via CSE as the function call does not
modify its value.

3.2.2 Benefits of using heap read/write sets

The data shown in Table 3 is for the case when we use
both stack and heap read/write sets. In order to measure
what part is due to the heap analyses, we also applied the
above optimizations with only stack read/write sets. In
Table 4 we compare the data for the total number of opti-
n&&ions applied, for the two cases. The columns labeled
as S and H respectively give the numbers for the case with
only stack read/write sets being used (Stack case), and the
case with both stack and heap read/write sets being used
(Heap case).

The number of loop invariants and/or common subex-
pressions eliminated increases moderately for the Heap
case, for all the benchmarks (except for &inn that does
not have any heap references). The Stack case is able to
detect the majority of the optimization opportunities, for
two reasons. First, for the case of globals and address ex-
posed variables, heap read/write information does not bring
any added advantage. Second, if a loop or code fragment

127

- “W”“’ -1-r ---.-- --- _-.--

gl 1 ae 1 addr 1 ind expr 1 gl ae 1 ind]I gl 1 ae addr j ind expr
dVilUl 121 01 61 3 010 01 311010 21s 5
water {I 449 I 26 I 104 I 33 265 t 0 1 t 10 11 0 I 4 111 I 143 202

I health II 1

** ., " 1 - - - --, --

specear 125 11 2 9 1 55 j/ 13 j 0 j 0 Ij 0 j 0 1 21 621 86
em3d I 0 01 0 g I 2 II 0 I n I n II ol 0 I ol 21 2 - - - - - - -

21 11 2 11 47 I 0 1 106 1 149 1 116 1

temp-iwar- =
temp-invar-19 =
for (i = 0; i <
i InputStateCil

Table 3: Distribution of Optimizations Applied

(*input); /* LIR */
EarLength; /* LIR */
temp-invar-19; i = i + 1)
= temp-invar-18;

(a) specear

temp-79 = (*p).un.cell.subp; /* LIR */
for (k = 0; k C= 7; k = k + 1)
I temp-78 = temp-79Ikl;

if ((temp,78 ?= 0))
C temp-82 = (dsq / 4.0);

ualksub-st95(temp-78, temp,82);
3

3
(b) nbody

while (nodelist *!= 0) if (sender <= end-sender) /* guard */
c c

temp-18 = (*nodelist).frora-nodes; /* LIR */
temp_iS = (*nodelist).coeffs; /* LIR */
temp-17 = (*nodelist).from-count; /* LIR */
for (i = 0; i < temp-i7; 1 .
$ other-node = temp-‘lS[il;

coeff = tempJ9Ul;
value = (*other-node) .vaIue;
temp-2l = (*modelist) .velue;
temp-22 = (coeff * value);
(anodelist).value = temp-21 - temp-22;
i=i+l;

3
nodelist = (*nodelist) .next

3
(c) em3d

temp-invar-2 = (*receiver); /* LcIR */
for (; (sender <= end-sender) ;)
{ temp-31 = temp-invar-2;

temp-34 = sender;
sender = (sender + 1);
temp-33 = (*temp,34) ;
temp-36 = weight;
weight = (weight + 1);
temp-35 = (*temp-36) ;
temp-32 = (temp-33 * temp-35);
temp-inver-2 = (temp-31 + temp,32) ;

3
(*receiver) = temp-inver,2;

3
(d) alvinn

Figure 7: Examples for Loop Invariants (LIRf and Location Invariants (LcIR)
does not involve any write to heap, all heap-related knari- 3.2.3 Runtime Improvements
ants/common subexpressions for it can still be detected read/write sets
without a heap analysis. . . _ ._

with pointor

The number of location inva&nts increases only for wa-
ter and health as these are the only benchmarks in which
heap-related location hwariant expressions arise, along with
ks. However, the two heap-based location invariants from
b arise in loops which do not involve any okher write access
to heap, so they can already be detected without needing
heap read/write sets.

As noted above, only with stack read/write sets that
conservatively estimate the heap, heap-related invari-
ants/common subexpressions may be detected in savcral
cases. Ljkewise, it is also possible that an optimizing com-
piler that conservatively htidles pointer references, could
also detect many of the optimization opportunities that our
analyses detect. For example, the CSE transformations
shown in Figure S{a) can also be performed without any
pointer analysis information (in fact gee does so).

In order to measure the additional benefits of our anal-

128

while ((cnrr-box != 0))
{ temp-14 = (&(*cnrr-box) .coord) ;

i = tempJ4COl;
temp-15 = temp-14; /* CSE */
j = temp-15 Cl1 ;
temp-16 = temp,14; /* CSE */
k = tempJ6[21;
. . . /* statements deleted */
curr,box = (*cnrr-box) .next-box;

3

(a) water

temp-234 = (*ch).ncolH;
temp,cse-2 = temp-234;
while ((temp-234 != 0))
{ temp-235 = (*ch).col;

mapUnk Ctemp-2351 = (*ch) . whichUnknown;
ch = temp-cse-2; /* CSE */
temp-234 = (*ch).ncolH;
temp-cse,2 = temp-234;

3
(c) cimlit

while ((list ?= 0))
{ temp-43 = (*list) .patient;

temp-44 = (*temp-43). time-left ;
if ((temp-44 = 0))
x f.. /* statements deleted */

temp-57 = temp-43; /* CSE */
(*temp-57) .time-left = 10;
temp-58 = temp-43; /* CSE */
temp-59 = (*temp-58) -time;
. . . /* statements deleted */

3
list = (*list) .foruard;

3
(b) health

temp-62 = (*act).vl;
temp-63 = (*n) .vl;
temp-61 = point-equal(temp-62, temp-63) ;
if ((temp-61 != 0))
(p = (*act> .v2;

3
else
< p = temp-62; /* CSE */

3

(4 vor

power 11 4 1 6

Figure 8: Common Subexpression Elimination (GE) Examples

Lc
s E

3
1

0
a
a

2
13
-ii
9
8

2
8

is-
H

3
11

3
0
0

2
13
0

9
8

2
8

CSE

SIH

Table 4: Total Optimizations Applied

yses over a state-of-the-art optimizing compiler, we have
compared our results with the GNU C compiler [30] (gee
version 2.7.2) working at the highest level of optimization
(with -03 flag). S ince our transformations are source-to-
source and are performed at the SIMPLE intermediate rep-
resentation, we performed the following experiment. We
produced three sources for each benchmark program: (i) the
dump of the SIMPLE representation of the program (plain
version), (ii) the dump of the SIMPLE representation of the
program after the above three optimizations are applied
with only stack read/write sets (Sopt version), and (iii) the
optimized dump with both stack and heap read/write sets
being used (Hopt version). The SIMPLE dumps are just sim-
plified C programs which can be compiled by any native C

129

compiler.
Next, we compile all three versions with the gee compiler

with -03 optimization flag, and compare the run-time per-
formance of the opt versions over the plain version. Note
that any difference in the performance can be solely at-
tributed to our sourc&o-source transformations. We col-
lected the following run-time statistics:

l The total number of memory references made during
program execution. This is an important metric as
the main effect of applying the above optimizations on
pointer expressions, globals and address exposed vari-
ables, should be the reduction of memory references.

l The total number of instructions executed. This re-

l

fleets how many instructions could be eliminated due
to loop invariant removal Also these source-to-source
optimizationz can enable the compiler to be less con-
servative and produce better code, which can lead to
a reduction in number of instructions.

The run time of the program measured using the
/usr/bin/time utility on an UItraSparc machine with
only single user logged on. The run time was calcu-
lated az the sum of the system and user time reported
by the time utility. Also the run time was averaged
over three runs of the program.

We collected the first two statistics using the EEL [23]
based QPT2 tool from Jim Larus, which instruments the
program executable to give exact counts. However, note
that run time reported is not from the QPT2-instrumented
versions of the executables.

The comparison of the above statistics is presented in Ta-
ble 5. The three multicohmms labeled “‘Mem Hefs”, “Insns”

and “Run Time” respectively give the data regarding the
number of memory references made, number of instructions
executed and the run iime. The columns Iabeled “Sopt”
and “Hopt” in the multicolumns labeled “%Decrease” re-
spectively give the percentage decrease achieved in number
of memory references or instructions executed, by the Sopt
and Hopt versions over the plain version. The coIumns la-
beIed “Abs Deer” give the actual decrease in the number
of memory references/instructions (in naillions) achieved by
the Hopt version over the plain version. Finally, in the “Run
Time” multicolumn, the first column (labeled ‘Base Time”)
gives the run time in seconds for the plain version. The next
two columns respectively show the percentage speedup ob-
tained by the Sopt and Hopt versions over the plain version.
The main observations from this table are discussed below.

The optimized versions achieve a significant reduction in
the number of memory references. The highest is 35.56%
for aluinn, while six other benchmarks achieve greater than
7% reduction. For afvinn, the main factor proves to be the
location-invariant removal shown in ,Figure 7(d), that ap-
plies to three critical inner loops. For specear, the pointer-
based array reference stateCi+l] arises twice (on rhs) in
its critical loop in function age. Between the two references
there is a write via another pointer-based array reference
output [il. Without pointer information gee is not able to
apply CSE across this write, while we can, and this brings
most of the reduction.

For other benchmarks, invariants Fd common subex-
pressions spread all across the program contribute. Finally,
for the potter benchmark we actually see an increase in the
number of memory references, despite the numerous appli-
cations of all optimizations (Table 4). This happens be-
cause in this benchmark some pointer expressions remain
invariant through a function and are used all across it. Via
CSE, all but the first occurence of this expression are substi-
tuted with a temporary. Such temporaries end up having
long lifetimes, causing the register allocator to introduce
spills, and perform worse than original.

The above observations highlight the applicability of our
optimizations to pointer expressions in particular- They
also indicate that there may not always be a direct correla-
tion between the number of times optimizations are applied
and the actual run time improvements.

For five benchmarks, 4% to 11% reduction is achieved
in the number of instructions executed. Again, for sople
benchmarks we see an increase in&e&d. This happens- due
to pulling out invariant expressions, which either belong to
an infrequently executed loop, or an infrequently executed
path inside the given loop.

The percentage decrease figures are always equal or
higher for the Hopt version compared to the Sopt version,
with the difference being most marked for health and signif-
icant for graphics, circuit and em3d. All these benchmarks
use recursive heap data structures, so heap read/write set+
bring added benefits.

We see run time speedup of 10.30% for aIvinn, 8.31% for
vor, 6.08% for water and 4.26% for yacr!?. These speedup
figures are quite significant in the context of our scalar opti-
mizations. Further they are achieved over “gee -03”. While
reduction in memory references and instructions executed,
always translates into a speedup, the speedup obtained is

130

not always in direct proportion. For example, for yacrd and
uor, the percentage decrease figures are much less than for
hearth or circuit. The reason they obtain better speedup
is that our source-to-source transformations sometimes en-
able the native C compiler’ to perform better instruction
scheduling due to substitution of pointer references with
scalars (this happens for these benchmarks). For the same’
reason, even with the same instruction and memory refcr-
ence counts, the Hopt version for specear achieves better
speedup than the Sopt version.

We have also studied the effects of our optimizations
in the context of parallelized programs for the EARTH-
MANNA multithreaded architecture. Here pointer refer-
ences mostly involve remote memory accesses. So applying
LIR, LcIR and CSE to such references results in even batter
savings, giving upto 25% speedup 1321.

3.3 Improving Array Dependence Tests

Scientific applications written in C also use arrays as
principal data structures. However, unlike FORTRAN,
these arrays are mostly implemented using pointers to
dynamically-allocated storage. tither even statically-
allocated Gays are often passed as pointer parameters.
The pointer-based array references pose new problems for
the array dependence tester (ADTJ. Consider the following
simple example Ioop:

for (i = 1; i < 100; i++)
i S: aCi3 = aCi] + i;

T: c[il = b[i-13 + aEi];
3

If the variables a, b and c are static integer arrays (de-
clared as int aUOO1, btlOO1, c~iOOl), the ADT can cas-
ily identify that the loop has a flow dependence from S
to T, but no loop-carried dependences. However, if these
variabIes are declared as integer pointers which point to
dynamically-allocated storage or to statically-allocated ar-
rays, the situation becomes more complex. Now, the ADT
cannot assume that two syntacticalIydifferent array refer-
ences are always independent. For example, if a and b point
to the same heap object/static array, we have a loop-carried
flow dependence from S to T. Using our pointer analyses,
we can easily check against such possibilities. For the above
loop, if either a, b and c point to different static arrays,
or if the anchor handles aQS, cQT, and bOT are not con-
nected with each other, the situation becomes identical to
the static case.

We have measured the effectiveness of our pointer anal-
yses for more precise ADT, using a set of array-based C
programs (described in Table I). For each benchmark, lvvo
collected the following ADT statistics: (i) the humber of ar-
ray pairs tested, (ii) the number of dependences detected,
&d (iii) the number of ford loops found using the ADT
results. Clearly, one would like to eliminate as many depen-
dence tests as possible, since each test is potentially expen-
sive, and spurious tests may lead to spurious dependences.
Reducing the number of dependences is beneficial both for
better fine-grain parallelism, and for exposing more ford
loops. More ford loops lead to more coarse-grain paral-
lelism.

I Prosram II Mem Refs II hlsus II Run Time I - - -Q- ~~~~~

%Decrease Abs %Decrease Abs Base %Speedup
sopt Hopt Deer Sopt Hopt Deer ,Time sopt Hopt

alvinu 35.56 35.56 684.92 11.64 11.64 682.04 42.70 10.30 10.30
water 15.59 15.64 388.16 4.50 4.51 407.13 64.10 5.77 6.08
health 0.00 15.41 135.27 -0.35 5.00 122.01 139.30 -1.87 1.36
graphics 12.41 14.32 t 236.30 t 7.87 9.08 1 236.10 t 42.40 1.89 3.07

i

circuit II

ks
vor
power

2.01 2.01 36.64 0.71 0.71 37.09 43.90 0.91 0.91
0.17 0.93 9.50 0.02 0.13 5.51 78.20 6.65 8.31

-0.01 -0.17 -0.41 -0.01 -0.05 -0.44 12.70 0.00 0.00

Table 5: Dynamic Improvements over gee -03

The data is shown in Table 6. The columns labeled P
and H respectively show the numbers for ADT without
any pointer information, and with both points-to and con-
nection information. One can see a significant reduction
in both array pairs tested and dependences detected. We
are also able to find more foraIl loops for specear, nrcode2,
Mocb2 and aluinn. These results indicate that pointer
analyses can make ADT considerably more effective. In
fact, some commercial compilers Iike pgcc (from Portland
Group Inc) provide pragmas to get similar iuformation (Iike
-Msafeptr for the user to indicate that certain pointers do
not share storage with other pointers/arrays). Fiiy, for
the other three benchmarks, the array dependences broken
fall into loops which are actually not forall loops. So we do
not see an increase for them.

Program Pairs 11 Deps 11 Forall
P 1 H 11 P 1 H 11 P 1 H

Table 6: Results for Array Dependence Analysis

3.4 frogram Understanding/Debugging
Our summary read/write information can also be

used as a program uuderstauding/debugging aid. For
example, consider a procedure foo (struct list *a,
struct tree *b), with the foIlowing summary informa-
tion: HeapWrite(foo) = (aQf oo->index, bQf oo->left ,
bQf oo->right} and HeapRead(foo) = {aQf oo->index,
aQfoo->next, bQfoo->left, bQfoo->right).

Based on this information we can make interesting obser-
vations about the effect of function foo on the data struc-
tures passed to it. The absence of aQfoo-lnext in the
HeapWrite set indicates that the function does not affect

the structure of the list (does not add/delete nodes), and
that it onIy modifies the scalar field index of some or ah
the nodes in the list (aQfoo->index E HeapWrite(foo)).

On the contrary, the presence of bQfoo->left and
bQf oo->rigbt in the HeapWrite set indicates that the left
and/or right pointer fieIds are modified for some nodes
of the tree. This could imply that either new nodes have
been added to the tree, or some nodes have been deleted, or
some nodes have simply swapped their children. According
to our experience with benchmarks, the usefuI information
is again the negative information: which tieIds are not up-
dated by the given function, with information about the
lint pointer fields being specially useful. Also, due to the
hierarchiical nature of our read/write sets, such information
cau be obtained with respect to other program constructs
Iike loops, conditionals and function calls.

To nicely display such information to the user, we have
developed a tool that uses a Web browser. We modified
our c-dump utility to produce H~h-n. version of the pro-
gram, with each statement decorated with a hyperliuk to
a CGI script passing the unique statement ID as a hidden
parameter. We aLso produced compressed f&s containing
the pointer analysis, and read/write sets information for
each statement along with its ID. We use three frames in
the browser. The top frame displays the kinds of infor-
mation avaiIable and the user has to chck at the appropri-
ate Iink to see a given flow information. This sets the the
fiIe containing the information as the current infofile. The
left frame displays the program itself. The right frame is
used as the workspace. When user clicks on a statement
or a function, the CGI script (written in perl) is invoked
with the statement/function ID as its argument. It looks
for this ID in the current infofile and displays the infor-
mation associated with it in a user friendly form in the
right frame. The information displayed also has interest-
ing hypertext links (clicking on a field displays the deli-
nition of its structure type). Further, clicking at a func-
tion prototype or a function call, takes one to the function
body. The reader can use this tool by visiting the Web page
http://sucr-acaps.cs.mcgill.ca/“ghiya/info.htnl.

- The summary read/write information can also be used

131

to guide data p&etching for recursive heap data struc-
tures [24], as it indicates which fields are potentially ac-
cessed with respect to a pointer, inside a Function or a loop.
So prefetch instructions can be placed for these fields at
function/Ioop entry. Also one can .avoid pyfetching fields
that are reported to be not used, thus reducing the prefetch
overhead. Similarly read onlyfield accesses can be consid-
ered 5s run time constants, which is a’very useful inForma-
tion in a dynamic compilation &text [Z].

Another direct application of connection information is
identification of potential memory leaks. When a heap
directed pointer p is updated, and no other fiue pointer is
connected to it, the heap storage accessible from p will be-
come inaccessible by the program. The programmer can be
warned of a potential memory kak at the given statement.

4 Related Work
As summarized in the introduction, a considerable

amount of work has been done on the problem of pointer
analysis itself, and a detailed description can be found
in [ll]. In this section we concentrate on s&marking
methods that use the results of pointer analysis.

Laudi et al. [ZO] and Choi et al. [6], proposed ap-
proaches for computing side-effect information (read/write
sets) in the presence of pointers. These approaches use
stack-based alias analysis. With a points-to representation
[lo, 26, 31, 331, where &!I locations have names, comput-
ing read/write sets is quite straightforward and only slight
modifications of standard transformations are needed as
shown in section 2.1. We assume that other compilers with
points-to analyses have similar applications.

More directly related to this paper are methods that use
the results of heap analysis. Work in this area has been
primarily focused on dependence analysis and paralleliza-
tion. The important approaches include: techniques using
path expressions to name locations 1221, using syntax trees
to name locations [14], extending k-limited graphs with lo-
cation names[l7]; and dependence testing based on access
paths and theorem proving [IS]. These approaches attempt
to perform very accurate analysis, and reason about differ-
ent parts of the same data structure (for example, determin-
ing if x->left->right possibly refers to the same location
as x->right->right or not). We have taken a more general
view of the potential uses of heap analysis, and have based
our method on a more coarse-grain heap analysis that can
distinguish between two data structures, but not references
within the same data structure.

in terms of using the improved read/write sets from
pointer analysis, for other analyses aud transformations,
the most relevant. related work is of Wilson and Lam 1331,
Shapiro and Horwitz 1281, and Cooper and Lu f7]. Wil-
son and Lam used pointer analysis results for loop paral-
lelization. Shapiro and Horwitz study the effects of various
flow-insensitive pointer analyses on the efficiency and preci-
sion of other anaIyses like live variable analysis and GMOD
analysis, but not on actual program transformations.

Cooper and Lu study the benefits OF pointer analysis in
the context of register promotion. Their work focuses on
promoting address exposed and global variables to registers
inside loops when possible. They also describe a technique
similar to location invariant removal to enregister pointer-

132

based array references. Their empirical results also in&-
cate a sign&ant decrease in memory references For some
programs, but no significant speedup. Their work can be
considered a subset of our study as we do not focus on only
loops, use a more precise heap analysis (they use malloc-
site naming approach), and finally, we provide real run-
time speedups over a state-of-the-art optimizing compiler
as against comparing the number of operations executed
collected via a simulator.

5 Conclusions and Future Work
This paper has focused on how to put pointer a&y-

sis to work. We demonstrated that the fundamental com-
ponent is computing read/write sets. We briefly summn-
rized the computation of read/sets from points-to analysis,
a store-based analysis that focuses on stack-directed point-
ers. More importantly, we have provided a new method for
computing read/write sets for connection analysis, which is
a storeless heap analysis. In order to achieve this WC in-
troduced the notion of anchor handIes, and read/write sets
based on anchor handles.

Based on both the stack and heap read/write sets, we
demonstrated a wide variety of applications. We provided
a description of several scaIar optimizations that cau in-
dude optimizations of computations using pointers. We
provided extensive static and dynamic measurements, in-
cluding measuring runtime improvement due to the scalar
optimizations. We also examined the effect of accurate
read/write sets on array dependence testers, and outlined
several other uses of read/write sets, including program un-
derstanding via a tool that interfaces with Web browsers.
We believe that our results show that pointer analysis is an
important part of an optimizing C compiler, and that one
can achieve significant benefits from such an analysis.

Our future work will be in three major directions. Firstly,
we plan to study the effect OF stack and heap rend/write
sets on fine-grain parallelism and instruction scheduling.
Secondly, we would like to compare the benefit of context-
sensitive, flow-sensitive analyses (as presented in this paper)
vs. flow-insensitive analyses. Finally, we plan to continue
to develop new transformations for pointer-intensive pro-
grams.

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Coppilera

- Principles, Techni ues, and Tools. Addison-Wesley
Pub. Co., Reading, M&s., corrected edition, 1988.

[2] 3. Auslander, M. PhiLipose, C. Chambers, S. J. Eggcrsl
and B. N. Be&ad. Fast effective d namic corn ila-
tion. In Pruc. of the A&M SIGPL.hV ‘96 Con)fdon
Programming Language Desi n and Implementatton,
pages 149-159, Philadelphia, $ enu., May 1996,

[3] T. M. Austin, S. E. Breach, and G. S. Sohi. Efticient

[4] D. Callahan, S. Carr, and K. Kennedy. Improv-
ing register allocation for subscripted variables, In
Proc. o the SIGPLAN ‘90 Con!. on Programmin Lan-
g;g;

p . t., June 1990.
;z n and Implementatzon,pages 53-65, fv* hltc

[5] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis
of pointers and structures. In Proc. of the SIGPLAN

‘90 Gonf. on Programming Lan
alementation. pages 296-310,

uagee D+sig; af I$-

‘J&c 1990. ’ * -
f%l ,..I

[6] J.-D. Choi, M. Burke, and P. Carini. Efficient
flow-sensitive inte rocedural corn

3 P
utation of pointer-

induced abases an side effects. n Gonf. Rec. of the
Twentieth Ann. ACM SIGPLAN-SIGAGT Symp. on
Principles of Pro ramming Languages, pages 232-245,
Charleston, Sout il Carolina, Jan. 1993.

[7] I<. D. Cooper and J. Lu. Register promotion in C pro-
ams.

F
In Proc. of the ACM SIGPLAN ‘97 Gonf. on

rogramming Language Design and Implementation,
pages 308-319, Las Vegas, Nev., Jun. 1997.

[S] A. Deutsch. A storeless model of abasing and its ab-
stractions using finite representations of right-re ar
equivalence relations. In Proc. of the 1992 Intl. P
on Computer Languages, pages 2-13, Oakland,

on .
f Cah .,

Apr. 1992.

[9] A. Deutsch. Interprocedural may-alias analysis for
ointers: Beyond k-limiting. In Proc. of the ACM SIG-

5 LAN ‘94 Gonf. on Programming Language Design
and Implementation, pages 230-241, Orlando, Flor.,
June 1994.

[lo] M. Emami, R. Ghiya, and L. J. Hex&en. Context-
sensitive interprocedural pointsto analysis in the pres-
ence of function pointers. In Proc. o the ACM SIG-
PLAN ‘94 Gonf. on Programming f anguage Design
and Implementation, pages 242-256, Orlando, Flor.,
June 1994.

[II] R. Ghiya. Putting Pointer Analysis to Work. PhD
thesis, SchooI of Computer Science, McGill University,
November 1997. In Preparation.

[12] R. Gbiya and L. J. Hendren. Connection analysis: A
practical interprocedural heap’analysis for C. Intl. J. of
Parallel Programming, 24(6), pages 547-578, 1996.

[13] R. Ghiya and L. 3. Her&en. Is it a tree, a DAG, or a
cyclic
ers in

aph? a shape anal sis for hea directed oint-
E In Gonf Ret oJthe 23rd &M SIG&AN-

SIGAGT Symp. dn Pknciples of Programming Lan-
guages, pages 1-15, St. Petersburg, Flor., Jan. 1996.

[14] V. A. Guarna, Jr. A technique for analyzing pointer
and structure references in parahel restructurin
pilers. In Proc. of the 1988 Intl. Gonf. on P

com-
arallel

Processing, volume II, pages 212-220, St. Charles, III.,
Aug. 1988.

[15] L. Hendren, C. Donawa, M. Emami, G. Gao, Justiani,
and B. Sridharan. Designin the McCAT compiler
based on a family of structure 5 mtermediate represen-
tations. In Proc. of the 5th Intl. Work. on Languages
and Compilers or Parallel Computing, number 757 m
Let. Notes in cf omp. Sci., pa es 406-420, New Haven,
Corm., Aug. 1992. Springer- B e&g. Publ. in 1993.

[16] L. J. Her&en and A. NicoIau. ParaIIeIizing programs
wit.h recursive data structures. IEEE Trans. on Par-
allel and Diatrib. Syslems, 1(1):35-47, Jan. 1990.

[17] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence anal-
ysis for pointer variables. In Proc. of the SIGPLAN
‘89 Gonf. on Programming Len ua e Design and Im-
plementation, pages 28-40, Port&n!, Ore., Jun. 1989.

[lS] J. Hummel, L. J. Hex&en, and A. NicoIau. A general
data dependence test for dynamic ointer-based data
structures. In Proceedings of the A& SIGPLAN Gon-
ference on Programming Lan uage Design and Imple-
mentation, pages 2X3-229, Or ando, s Flor., June 1994.

[19] W. Landi and B. G. Ryder. A safe approximate aIgo-
rithm for inte rocedural ointer abasing. In Proc. of
the ACM SIGTLAN ‘92 zonf.. on Programming Lan-

uage Design and Implementatron,pages 235-248, San
Fk ancisco, Calif., Jun. 1992.

.[20] W. Landi, B. G. Ryder, and S. Zhang. Interprocedural
modification side effect analysis with pointer abasing.
In Proc. of the A GM SIGPLAN ‘93 Gonf. on Program-
ming Language Design and Implementation, pages 56-
67, Albuquerque, N. Mex., Jun. 1993.

I211 C. Lapkowski and L. J. Hendren, Extended SSA mnn-
berin-: Introducing SSA roperties to langua
nn&IeveI pointers. In firoceedings of CAS

es with
6

Toronto, Ontario, Nov. 1996.
ON’96,

[22] J. R. Larus and P. N. HiIfinger. Detecting confhcts be-
tween structure accesses. In Proc. of the SIGPLAN ‘88
Gonf- on Programming Language Design and Imple-
mentation, pages 21-34, Atlanta, Georgra, Jun. 1988.

[Zi] J. IX. Larus and E. Schnarr. EEL: Machine
inde endent executable editing. In Proc. of the ACM
SIG$LAN ‘95 Gonf. on Programming Language De-
sign and Implementation, pages 291300, La Jolla,
C&f., Jun. 1995.

[24] C.-K. Lnk and T. C. Mowry. Compiler-based prefetch-
ing for recursive data structures. In Proc. of the Seu-
enth Intl. Gonf. on Architectural Support for Program-
ming Languages and Opemting Systems, pages 222-
233, Cambridge, Mass., Oct. 1996.

f25I A. RoEers. M. C. Carlisle, J. H. Reppy, and L. J.
L a - . ___.

Her&en. Supporting dynamic data structures on
distributed-memorv machmes. ACM Trans. on Pro-
gramming Languiges and Systems, 17(2):233-263,
Mar. 1995.

[26] E. Ruf. Context-insensitive ahas analysis reconsidered.
In Proc. of the AGMSIGPLAN ‘95 Gonf. on Progmm-
min
22, i!

Language Desi
a Jolla, Cahf., I

n and Implementation, pages 13-
nn. 1995.

[27] M. Sagiv, T. Reps, and R. WiIhehn. Solving shape-
an&& roblems in Ian ages with destructive u

fn Gonf Ret orthe 23rd ACM SIGPLAE-
SIGk?T Symp. ‘on Piinciples of Pro
guages, pages 16-31, St. Petersburg, F or., Jan. 1996. 9

ramming Lan-

[28] M. Shapiro and S. Horwitz. The effects of the precision
of pointer analysis. In Proceedings o the 1997 Static

4 Analysis Symposium, Paris, France, ep. 1997.
1291 M. Shapiro and S. Horwitz. Fast and accurate flow-

insensitive o&s-to anal sis. In Gonf. Rec. of the 24th
A GM SIG6)LA N-SIGA G$ Symp. on Princples of Pro-
gramming Languages, pages l-14, Paris, rance, Jan.
1997.

[30] R. M. StaIhnan. Using and Porting GNU CC. Cam-
bridge, Mass., Jun. 1992. Available via anonymous ftp
from prep. ai. nit. edu.

[31] B. Steensgaard. Points-to analysis in almost linear
time. In Gonf. Rec. of the 23rd ACM SIGPLAN-
SIGAGT Symp. on Principles of Pro ramming Lan-
guages, pages 32-41, St. Petersburg, F or., Jan. 1996. 9

[32] X. Tang, R. Ghiya, L. 3. Hendren, and G. R. Gao.
Heap analysis and optimizations for threaded pro-
grams. In Proc. of the 1997 Gonf. on Parallel Archi-
tectures and Compilation Techniques (PAGT’97), San
Francisco, Calif., Nov. 1997.

[33] R. P. W&on andM. S. Lam. Efficient context-sensitive
pointer anaI?sis for C pro ams.

F
In Proc. of the ACM

SIGPLAN 95 Gonf. on rogmmming Lan uage De-
k-i sii ant51mplementation, pages l-12, La Jo , Cahf.,

_ .
[34] S. C. Woo, M. Ohara, E. Torrie, J. P. Shin& and

A. Gupta. The SPLASH-2 pro ams: Chrjf;
zation and methodological COILSI erations. T .
of the 22nd Ann. Intl. Symp. on Computer Architec-
ture, pages 24-36, Santa Margherita Ligure, Italy, Jun.
1995.

[Xi] S. Zhang, B. G. Ryder, and W. Landi. Program decom-
position for pointer ahasin
analyses. In Proceedings

A step towards practical
the 4th Symposium on the

Foundations of Software October 1996.

133

