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Abstract 
This paper addresses the problem of how to apply pointer 

analysis to a wide variety of compiler applications. We are 
not presenting a new pointer analysis. Rather, we focus 
on putting two existing pointer analyses, points-to analysis 
and connection analysis, to work. 

We demonstrate that the fundamental problem is that 
one must be able to compare the memory locations 
read/written via pointer indirections, at different program 
points, and one must also be able to summarize the ef- 
fect of pointer references over regions in the program. It is 
straightforward to compute read/write sets for indirections 
involving stack-directed pointers using points-to informa- 
tion. However, for heap-directed pointers we show that one 
needs to introduce the notion of anchor handles into the 
connection analysis and then express read/write sets to the 
heap with respect to these anchor handles. 

Based on the read/write sets we show how to extend tra- 
ditional analyses like common subexpression elimination, 
loop-invariant removal and location-invariant removal to in- 
clude pointer references. We also demonstrate the use of 
our information on more advanced techniques such as array 
dependence testing and program understanding. We have 
implemented our techniques in our McCAT C compiler, and 
we demonstrate examples of applying our methods on a set 
of pointer-intensive C benchmarks, as well as present con- 
crete empirical data on the improvements achieved. 

1 Introduction and Motivation 
Pointer analysis has recently been a subject of active re- 

search. This paper focuses not on a new pointer analysis, 
but rather on how the results of two existing pointer analy- 
ses can be used for a wide variety of compiler applications. 
That is, once the relationships between pointers are com- 
puted, what can we do with it? How do we put pointer 
analysis to work? 
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A variety of effective techniques have been proposed to 
estimate pointsto or alias relationships for C [6, 10,19,26, 
29, 31,33, 351. A common feature of all these techniques 
is that they approximate relationships between named ob- 
jects. For objects that are on the stack, the appropriate 
variable names are used, while dynamically-allocated ob- 
jects are handled by associating them to some set of static 
names. ’ This approach, where all memory locations are 
named, has several advantages. Firstly, the same analy- 
sis can be used for pointers to stack objects (staclc-directed 
pointers) and pointers to heap objects (heap-directedpoint- 
ers). Secondly, since names are static, it is quite simple 
to use the information in subsequent compiler analyses. 
However, treating the heap as a static set of named lo- 
cations can also lead to signihcant imprecision [s], and sub- 
stantial improvements in accuracy can be achieved when 
special heup analyses are used for heap-directed point- 
ers [S, 9, 12, 13, 16, 271. These approaches have focused 
on using d&rent kinds of abstractions in order to get more 
precise or richer descriptions about the relationships be- 
tween heap-directed pointers. However, a question remains 
about how to use the information provided by these analy- 
ses in subsequent compiler transformations- 

Our approach has been to handle the stack and heap 
problems separately. We fnst resolve all pointer relation- 
ships on the stack nsing a store-bosedpoints-to analysis [lo], 
which abstracts all heap locations as a single symbolic lo- 
cation called heap. All pointers reported to be pointing to 
heap are then further analyzed via a hierarchy of storeless 
heap analyses, connection analysis [12], and shape anoly- 
sis [13]. The focus of this paper is to examine how the 
combination of points-to analysis and connection analysis 
can be used to compute information that can be used for 
a wide range of compiler applications. Connection analysis 
was chosen because it is a relatively simple type of store- 
less analysis that does not give names to all heap locations. 
Thus, it demonstrates the problems in nsing the results of a 
storeless analysis, and yields interesting results when “put 
to work” propedy. The main contributions of this paper 
are as follows. 
Computing read/write sets based on a store- 
less pointer analysis: Computing the set of locations 

‘The simplest solution is to use only one name called heap, 
while more accurate solutions use some variant of malloc sites 
(i.e. associate each malloc site in the program with a name). 



read/written by a statement or program block is relatively 
simpte when based on a store-based analysis [6, 201. We 
aIs0 provide a brief description in Section 2.1. However, 
for a storeless anaIysis like connection analysis, a central 
problem is that even though one has fairly accurate infor- 
mation at each program point, one does not have static 
names for heap locations, and thus it is difficult to relate 
information known at one program point to information 
known at another program point. Further, it is not im- 
mediately obvious how to summarize the information for 
many program points (i.e. summarize the &ect of a func- 
tion body). Our solution is to create just enough names for 
heap objects, called anchor handles, so that we maintain 
the advantages of a storeless analysis, and at the same time 
we can use the information about these named anchor han- 
dles to relate different program points, and to summarize 
effects over many program points. We have implemented a 
connection anaIysis augmented with anchor handles, and a 
subsequent analysis that computes read/write sets relative 
to those handles. 
Applications based on read/write sets: Based on 
read/write sets, we demonstrate how to use the informa- 
tion for a wide variety of applications including: (1) ex- 
tending standard scaIar compiler transformations, Iike loop- 
invariant removal, location-invariant removal, and com- 
mon subexpression elimination, to include pointers refer- 
ences; {2) providing improved input to array dependence 
testers; and (3) providing summary information that is use- 
ful for program understanding, dynamic compilation [2] and 
prefetching of pointer data structures 1243. 
Implementations and EmpiricaI studies: We have im- 
plemented our techniques in the McCAT compiler, and we 
present empirical data to illustrate the costs and benefits 
of the techniques. By performing source-to-source scalar 
transformations based on our read/write sets, we demon- 
strate up to 10% performance improvement over gee -03. 
For array dependence testers we show significant improve- 
ments with pointer read/write sets, and we demonstrate 
the use of our read/write sets for program understanding 
via a tool that produces output that can be browsed via 
Web browsers. Thus, we feel that we have demonstrated 
many practical applications of pointer analysis. 

The paper is organized as follows. In Section 2, we 
present the necessary background for pointsto analysis and 
connection analysis, and discuss how to compute read/write 
sets based on both analyses. In Section 3 weiIIustrate scalar 
optimizations and discuss other applications of read/write 
sets. We summarize related work in Section 4, and in Sec- 
tion 5 we draw conclusions and discuss future work. 

2 Foundations 
Our main goal is to identify the set of locations 

read/written by a given statement or program region. Con- 
sider the smaII program fragment in Figure 1. For state- 
ment S it is straightforward to compute that Read(S) = {y’, 
z) and Write(S) = (x}. However, statements T and D in- 
volve indirect references and using the simple syntax-based 
approach above gives Read(T) = {q, *d, Write(T) = ip), 
and Read(U) = (q, y), Write(U) = {*Q). This informa- 
tion is not sufficient to correctly identify interstatement 
dependencies. For example, Read(T) may conflict with 

122 

Write(S), as the indirect reference *q can potentially access 
the same location as the variable x. Similarly, Write(U) 
may not conflict with Read(T), as the target of pointer q 
can change between the two statements. Thus in order to 
relate the read/write sets of statements involving indirec- 
tion with those of other statements, one needs to resolve 
indirect references into a set of static locations. In the next 
two sections we outline the methods for accurately comput- 
ing read/write sets using points-to analysis and connection 
analysis. 

s: x = y + 2; 
T: p = *q; 

. . . 
u: *q = y; 

Figure 1: Example for Read-Write Sets 

2.1 Points-to Analysis and Read/Write 
Sets 

Points-to anaIysis is a stored-based pointer analysis i.e. it 
specifically relies on the fact that alI pointer targets have a 
compile-time name. It calculates pointer targets in terms of 
program point specific points-to triples of the form (x, y,D) 
or (x,y,P). The triples respectively denote that the vari- 
able x definitely/possibly contains the address of the loca- 
tion corresponding to y. Symbolic names are generated for 
pointer targets outside the scope of the current procedure. 
Since heap locations are inherently anonymous, they arc 
-abstracted as one symbolic stack location called heap. 

The detded description of our context-sensitive inter- 
proceduraI points-to analysis can be found in [lo]. Here 
we simply illustrate it using the small code fragment shown 
in Figure 2. At program point C we have the points-to 
triples (s , ptA, Dl and (t , ptB, D>, which get respec- 
tively mappedas (c, i-c, Dl and (d, l-d, Dl at the en- 
try of function sum (program point U). Note that i-c and 
14. are symbolic locations generated to represent ptA and 
ptB (local to main) inside function sum. Based on this in- 
formation, the read/write sets for statements U and V, and 
for the entire function sum can be easily computed a~: 

Read(U) = {c, d, Lc.x, 1-d-y) Write(U) = {Lc.x} 
Read(V) ,= {c, d, Lc.y, l-&x) Write(V) = (I-c. y} 
Read(sum) = {c, d, I-c.x, Lc.y, 1A.x. Ld.y} 
Write(sum) = {Lc.x, 1r.y) 

?hom this information, inter-statement dependencies for 
the function sun can be easily detected. Finally, the 
read/write sets for the function call to sum at program point 
c are computed by unmnpping the read/write sets for the 
function sun, giving the Following information: 

Read(C) = {s, t, ptA.x, ptA.y, ptB.x, ptB.y} 
Write(C) = <ptA.x, ptA.y) 

‘Now consider the program pojnt D. Here we have the 
points-to triples (s, heap, P> and (t, heap, P>, which 
get mapped as (a, heap, Pl and (b, heap, Pl at the 
entry of function flip. With this information, we get 
very conservative read/write sets: Read(S) = Write(S) = 

._. - - _. ---_ -_-z- --_r,r . ..-. -. _ _... 7-n .,...._... *..,_ I._ 2-Y r- .,-. > .--7 --l-’ 



typedef struct point 
{ double x; 

double y ; 
struct point *next: 

)Point ; 

void flip(Point *a, Point *b) 
/* a-gets the reflection of b */ 
( S: a->x = b->y; 

T: a->y = b->x; 
3 
void sun(Point *c, Point *d) 
C U: c->x = c-)x + d->y; 

v: c->y = c->y + d-)x; 
3 

Figure 2: Example for Connection-based Read-Write Sets 

void main0 
{ Point *s, *t, ptA, ptl3; 

int y; 
s = %ptA; 
t = &ptB; 

c: sum(s, t); 
s = allocgoint 0 ; 
t = allot-point0 ; 

D: flip(s, t); 
E: y = s-)x; 

3 

connect(P) = { (d,e) / conn=W) = I @A, WA (es) I 
Figure 3: Snapshots and related connection information 

Read(T) = Write(T) = {heap}, which indicate a false de- 
pendence between S and T. To obtain sharper read/write 
information for heap-directed pointers, we further perform 
a heap analysis called connection analysis, described below. 

2.2 Connection Analysis and Read/Write 
Sets 

Connection analysis is a storeless heap pointer a&y- 
sis, i.e., instead of explicitly computing the potential tar- 
gets of a pointer, it computes connection relationships be- 
tween pointers. It is performed after points-to analysis, 
and focuses only on pointers reported to be heap-directed 
by points-to analysis. Two heap-directed pointers are con- 
nect& if they possiHy point to heap objects belonging to 
the same data structure. They are not connectedif they 
de$nitely point to objects belonging to disjoint data struc- 
tures. Figure 3 demonstrates a snapshot of a typical stack 
and heap at some program point P, and then another snap- 
shot after executing the statement n = d->next (program 
point P’). Below the snapshots we give the connection re- 
lationships that hold at each point. First consider program 
point P. At this point there are five pointer variables that 
are heap-directed. Variables a and b point to disjoint ar- 
rays, and so they are not connected. Variables c, d and 
e point to various Iinhed-list nodes. In this case only d 
and e point to the same data structure, and so they are 
the only variables that are connected. Thus, a valid con- 
nection set at P is ((d, e)). After executing the statement 
n = d->next, n must be connected to aII handles that were 
previously connected to d. Thus, a valid connection set at 
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P’ is {(d, e), (n, d), (n, e)}. Note that it is the negative in- 
formation that is reaUy usefuI. For example, the pair (a, b) 
is not in the set of connection relationships, so any oper- 
ation on array a must be distinct from any operation on 
array b. SimiIarly any access to the Iist pointed to by c 
must be distinct fkom any access to the list pointed to by 
d. Also, note that connection reIationships are given only 
in terms of program variables, and the actual objects in the 
heap are not given any names. Thus, even though the nodes 
of aII the lists may have been allocated by the same static 
malloc site, connection analysis can determine that the Ii& 
are disjoint. Connection analysis is a context-sensitive in- 
ter-procedural analysis, and its detailed description can be 
found in [12]. 

2.2.1 Difficulties in computing read/write sets 
based on connection analysis 

Smce connection analysis is storekss, it is difficuh to 
relate connection information at different program points. 
Consider again the function flip in Figure 2. At call-site 
D of function flip, pointers s and t point to disjoint heap 
objects and are not connected. Consequently, at the en- 
try to flip parameters a and b are not connected, and 
they remain disconnected over the entire function body (no 
statement connects them). Suppose we want to summarize 
the locations read and written relative to the parameters a 
and b. Based on the connection information we may deduce 
that the sets Write(S) = {a->x}, and Read(T) = {b-)x} 
do not conflict, as a and b point to disjoint objects at both 
SandT. 



void tricky-flip(a,b) 
Point *a; Point *b; 
C Point *tmp; 

S: a->x = b->y; 
/* saap a and b */ 
tnp = a; a = b; 
b = tmp; 

T: a->y = b->x; 

’ [a) trickyflip (b) program point S, connect(S) = {} 

Figure 4: Tricky Example 

(c) program point T, connect(T) = {I 

However, such simplistic solutions do not suffice. Con- 
sider the function, trickyflip, given in Figure 4(a). As ii- 
lustrated in Figures 4(b) and 4(c), the pointer values stored 
in a and b change. Thus, even though a and b are not con- 
nected at point S, and also not connected at point T, there is 
a ftow dependence since a->x at point S is the same location 
as b-)x at point T. 

2.2.2 Dropping Anchors 

The fundamental problem in the trickyflip example 
is that we don’t have enough names for heap objects. The 
same programmer-defined name may refer to different ob- 
jects at different program points. The solution is to invent 
enough new names, anchor handles, so that further analy- 
ses can be done simply, based on information relative to the 
anchor handles. Codsider a new version of trickyflip as 
given in Figure 5. In this example, we have introduced 
the names a@trickyflip and batrickyflip which an- 
chor the parameters, and we have introduced a@S, which 
is an anchor for variable a at program point S. Anchor han- 
dles are given their initial values by introducing ghost copy 
statements. AII anchors for parameters are copied at the 
beginning of a function body, while program-point-specific 
anchors of the form a@S are copied at the given program 
point S.2 Although we have shown these as part of the pro- 
gram, in fact, the anchors and ghosts are only implemented 
in the connection analysis, and the actual program is not 
modified. 

Anchor handles serve as “anchor points” for analy- 
sis within the body of a function. Informally, we can 
now compute the read/write sets with respect to heap 
related indirect references by noting that an anchor han- 
dle x8p is read/written each time any pointer connected 
to xap is read/written. For example, as ilhrstrated 
in Figure 5, at statement S, a is connected with an- 
chors aQtrickyflip and aOS, and so we would indicate 
that writing a->x actually writes to the anchored loca- 
tions a@trickyfl.ip->x and a@+>x giving HeapWrite 
= (a&rickyflip->x, a@+>xj. SimiiarIy, at statement 
T, b is also connected with anchors a@trickyflip and 
aOS, so the read b->x actually reads the anchored loca- 
tions a@trickyflip->x and a&S->x giving HeapRead = 
{a&rickyflip->x, a&S->x). Comparing the sets Heap- 
Write(S) with HeapRead( one can detect the flow de- 
pendence from S to T. 

2For the sake of clarity we do not include other anchors like 
b@S and a@T in this example. 
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We can also collect heap read/write sets with respect to 
function parameters in terms of their anchors. In our cx- 
ample, for the function trickyflip, we have the following 
information: 

HeapWrite(trickyJIip) = HeapRead( tricky-flip) = 
{a@trickyflip->x, b@trickyflip->yj 

This function level information could be used to determine 
that at the entry of function trickyflip: (1) it might 
be useful to prefetch a-)x and b->y, but one should not 
prefetch b->x and a->y; and (2) there are no updates to 
the next field of either a orb, and thus tricky-flip does 
not change the “listness” of any data structure. 

2.2.3 Introducing Anchor Hmdles into Con- 
nection AnaIysis 

Introduction of too many anchor handles can afTect tho 
efficiency of connection analysis. Hence identifying the pro- 
gram points where anchor handles need to be introduced, 
and selecting the locations to be anchored, is an important 
issue. 

In our implementation, for each function in the progrm, 
anchor handles are generated for each: (i) heap-directed for- 
mal parameter, (ii) heapdirected global pointer accessed in 
the function, (iii) call-site that can read/write a heap loca- 
tion, and (iv) heap-related indirect reference in the function 
body (*p is considered heap-related if the entry (p, heap, P) 
is in the points-to set at the given program point). Tha 
first two types of anchor handles are introduced to com- 
pute heap read/write sets for the entire function (in Fig- 
ure 5 the handles aOtrickyflip and bOtrickyllip fall 
into this category). Call-site anchor handles are used to 
compare heap read/write sets of a function call with those 
of otht statements. To include anchor handles in the con- 
nection an$ysis, ghost copy assignments are perforincd at 
function entry points and at all indirect references to the 
heap. Note that the points-to information about which in- 
direct references/function calls can access the heap, enables 
us to reduce the number of anchor handles generated. 

We use extended SSA numbers [21] to further rcducc 
the number of anchor handles required. Although concep- 
tually one requires a new anchor handle for each indirect 
reference to the heap, in fact, anchor handIes can often be 
reused. For example, in the program in Figure 5, the an- 
chor a@trickyflip can also be used as the anchor aOS, 
because they anchor the same location: pointer a has not 
been updated between-the program points the two ban- 
d&es are created. Thus, the same handle can be used to 



void tricky-flip(a,b) 
Point *a; Point *b; 
{ Point *tmp; 

Point *aQtricky,flip, 
*bQtricky,f lip, 
*aQS; /* anchors */ 

aQtricky_flip = a; /* ghost */ 
betricky-flip = b; /* ghost */ 
aW = a; /* ghost */ 

S: a->x = b->y; 
/* swap a and b */ 
tmp = a; a = b; b = tmp; 

T: a->y = b-)x; 
3 

(a) trickyflip 

aetricky-flip 
betricky-flip 

connect(S) = {(a, a@tric&flip), (b, b@trickyJZip), 
(a, aOS), (a@& a&-icky-flip)} 

(b) program point S, 

“m‘..\_ 1 -- - 
a@tricky_flip 
b@tricky-flip 

connect(T) z{(b, a@tricky$ip), (a, b@tricky-flip), 
(b, a@S), (a&9, a@tricky-flip)} 

(c) program point T 

Figure 5: Dropping Anchors and Inserting Ghost Copy Statements 
anchor all indirect references involving a given definition 
of a pointer. Our extended SSA numbering associates a 
new primary SSA number to a variable (inchrding point- 
ers), whenever it is potentially updated (inchuhng indirect 
updates). Thus, when we generate an anchor handle for 
a pointer ptr, we also associate its current SSA number k 
with the handle. If an anchor handle for ptr with the SSA 
number k already exists we do not generate a new one, and 
reuse the existing one for the given indirect reference too. 

In subsection 2.1, we briefIy illustrated how stack 
read/write sets are computed for function calIs using map 
information from points-to analysis. Heap read/write sets 
for function calls, are also computed using the map informa- 
tion deposited by connection analysis, which is a context- 
sensitive inter-procedural analysis. It generates special sym- 
bolic names to represent heap pointers which are invisible 
in the cahee procedure, but whose connection relationships 
can still be modified by it. 

Consider again the caU to function flip in Figure 2. Due 
to parameter passing, the cab generates the connection re- 
Iationships: ra,s,l and (b, t). However, as the names s and 
t are not visible to the fiznction flip, connection anaIysis 
maps them to special symbolic names O+a and O+b, gen- 
erating the connection relationships (a,O+a) and (a,O+b). 
Now the ghost copy statements at the entry to flip wiII 
generate the connection pairs: (a@jIip,O+a), @@jlip,O+b) 
in addition to the pairs (a@Jip,a) and (b@jIip,b). The heap 
read/write sets for function flip in terms of the parameter 
anchors will be as follows: 

HeapFtead(fIip) = {bQf lip->y , bQf lip->x} 
HeapWriteQIip) = (aoflip->x, aDflip->y) 

On unmapping, connection analysis has the information 
that: (i) s is mapped to O+a, (ii) O+a is connected with 
the anchor a@f lip, and (iii) aOf lip->x and a@f lip->y are 

in the set HeapWrite(fIip). prom these facts, it deduces 
that in the context of function main, the anchored loca- 
tions SOD->x and SOD->y are written by the caU to flip at 
program point D. Similarly for pointer t it deduces that the 
locations t@D-lx and MD->y are read by the cab. In our 
implementation, we do not generate an anchor for each ar- 
gument to a call. Instead we generate just two handles, 
rdimchor0D and wrt~chor@D to respectively represent 
read and write anchors, and express read/write sets with 
respect to them, giving the foIlowing sets for the caII to 
flip: 

HeapFtead(D) = {rd.anchorQD->x, rd-anchor@D->y) 
HeapWrite = {wrtzmchor@D->x, wrtanchor@D->y} 

Additionally, we perform the ghost copy assignments, 
rd_anchorQD = t and wrt_anchorQD = s, after the func- 
tion call is processed. Due to these assignments, at state- 
ment E in function main (E: y = s-)x), we wivill find s con- 
nected with sn%anchorOD, and hence cau detect that state- 
ments D and E con&t. Thus the main idea is that instead of 
creating an anchor for each pointer with respect to which 
the function caII can access the heap, we just create two 
anchors to represent aII the needed anchors. Further im- 
plementation details about anchor-augmented connection 
analysis can be found in [ll]. 

2.2.r Analysis Efficiency 

We have evaluated the efficiency of our anaIyses with re- 
spect to a set of 12 C benchmark programs, drawn fmm 
the SPECD2, SPLASH-2 [34], Olden [25], Irvine [IS] and 
Wisconsin [3] benchmark suites. A brief description of the 
benchmarks is provided in TabIe 1. The table also summa- 
rizes the principal data structures used by the benchmarks. 
Here S-Array denotes a statically allocated array, D-Array 
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1 RP 11 Description 1 Data Structures 

_- 
I 

vor I] Voronoi Diagrams ] Splay ‘IIee & Lists 
oower I] Power Outimization 1 k-ary ‘Ikee _ 

I nrcode2 II Vector C benchmark I D-Arrays I 
blocks2 Comput. Siology D-Arrays & Lists 
sim Comput. BioIogy D-Arrays & Lists 
ejgen Eigenvalues D-Arrays 

Table 1: Benchmark Descriptions 

denotes a dynamically allocated array, and D-linked list de- 
notes a doubly-linked list. 

I Prrm 11 NS 1 SR 1 HR 1 AA 4 PT ] CT ] 
, - L 

is 1 11 652 1 44 1 90 0.68 0.59 0.58 
vor 63 t 479 

1 1 1 
1 0.50 1 2.87 1 2.59 

Table 2: Analysis Statistics 

in Table 2 we provide the analysis times measured on an 
UltruSparc machine in seconds. The points-to and connec- 
tion timings (PT and CT) respectively include the addi- 
tional time spent in computing stack and heap read/write 
sets. The table also provides the following information for 
each program: (i) number of SIMPLE statements (NS), (ii) 
number of stack and heap related indirect references (SR 
and HR), and (iii) the average number of anchor handles 
generated per indirect reference (AA). An interesting ob- 
servation is that our context-sensitive pointer analyses are 
quite efficient for moderate size benchmarks. This indi- 
cates that if interesting sections of larger programs can be 
identified using linear analyses [29, 31], precise informa- 
tion for these sections can be obtained efficiently. We are 
presently experimenting with this approach to efficiently 
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analyze large prog&ns. Another observation is that the 
average number of anchor handles generated per indirect 
reference is about 0.50 for most of the benchmarks. This 
indicates that by using SSA numbers, we reduce the number 
of.&chor handles needed by almost 50%. 

3 Applications 

We have used our implementation of stack and heap 
read/write set analyses as the basis for extending several 
standard scalar compiler optimizations like loop-invtiant 
removal (LIR) and global common sub-expression elimi- 
nation (CSE), and for more advanced compiler applica- 
tions like array dependence testing. We have also built 
a program-understanding tool, that &spIays the summary 
read/write information to the user via Web browsers. In the 
following sections we assume that we are working with the 
‘SIMPLE representation of a C program using the McGAT 
compiler [15]. 

3.1 Scalar Optimization-s 

We have used the algorithms from [l] to implement tho 
LIR and CSE optjtizations. Our implementation is more 
powerful due to improved read/write information. Further, 
it extends these optimizations to include read pointer cx- 
pressions, globals and address exposed variables (variables 
whose address has been taken). The latter two are included 
because they cannot b&register-promoted in the absence of 
alias jnformation. 

We have also implemented another optimization we call 
location-invariant removal (LclR), which is simiiar in spirit 
to the scalar replacement technique proposed for array rcf- 
erences [+I]. Any memory reference that accesses the same 
memory location in all iterations of a loop is considered to 
be location invariant. For example, the pointer access r->i 
in Figure 6(a) is location invariant as the origin pointer r 
is’ not written inside the loop. We can replace all accesses 
to r->i w2.h a scalar, say tr, as shown in Figure 6(b). To 
safelyperform location invariant removal, we check that all 
memory references in the loop that can access the given 
location, are syntactically equivalent to the given location 
invariant reference. For example, in Figure 6(a), if p->i 
can access the same location as r->i, LcIR cannot be pcr- 
formed. 

Fin&y, when moving a pointer reference for loop or lc+ 
cation invariant removal, we guard the invariant statements 
with the loop condition when necessary, in order to pro 
serve program semantics (example in Figure 7(d)). Further 
implementation details for the above optimizations can be 
found in [II]. 

tr = r->a; 
tlhile (p != IJULL) while (p != NULL) 
( S: r-X = r->i + p-M; { s: tr = tr + p-H; 

T: p = p->next; T: p = p->next; 
3 3 

r->i = tr; 
(4 P4 

Figure 6: Location Invariants 



. 
3.2 Experimental Results for Scalar Opti- 

mizations 

In this subsection, we study the experimental results ob- 
tained by applying the above three optimizations to a suite 
of 12 pointer intensive C benchmarks programs briefly de- 
scribed in Table 1 (first 12 entries). We have collected both 
static (compile-time) and dynamic (runtime) statistics. 

First, we present the compile-time data, which indicates 
the applicability of a given optimization for a program when 
using both the stack and heap read/write sets (Section 
3.2.1). We then examine how many of these optimization 
opportunities are due to the presence of heap read/write 
sets (Section 3.2.2). Fir&y, we provide runtime measure- 
ments to measure the ultimate benefit of our read/write sets 
for decreasing the number of memory accesses, decreasing 
the number of instructions executed, and decreasing the 
running time of optimized programs (Section 3.2.3). 

3.2.1 Optimieations applied with stack aud 
heap read/write sets 

Our first experimental results report how many oppor- 
tunities arise for our scalar optimizations, when run with 
both the stack and heap read/write sets available. The 
purpose of this data is to demonstrate the types of opti- 
mizations possible, and to show that a significant number 
of opportunities arise in pointer-intensive benchmarks. 

In Table 3, the three multicolumns respectively give the 
number of times the three optimizations: loop-invariant re+ 
moval (Loop Invars), location-invariant removal (Lot In- 
vars) and common subexpression elimination (CSE), are 
applied for a program. Each multicolumn is further divided 
into several labeled cohnnns, which give the data for differ- 
ent types of expressions. The denotations for labels are as 
follows: (i) gl: global variables, (ii) ae: address exposed 
variables, (iii) addr: address calculations of the form &aEil 
or 9 (a->f ield) , (iv) ind: indirect references (*a, a->f ield, 
a [i] where a is a pointer), simple array references (aCi1 
where a is not a pointer), and simple component references 
(a.f ield), and (v) expr: expressions involving computation 
(lhs = op scalar, lhs = scalar-l op scalar2). Note 
that location invariant optimization is not applicable for 
expressions involving address calculations or computation. 

For several benchmarks globals and address exposed vari- 
ables contribute significantly to the number of loop invm-i- 
ants (water, speceor and yacr2). AU these benchmarks use 
a number of global variables which are initialized only once 
in the program (at the beginning), and so are invariant for 
most of the loops. Our loop-invariant algorithm replaces 
them with temporaries which can be register allocated. Fig- 
ure 7(a) shows an example from the speceur benchmark 
where the global variable Earlengthis substituted with the 
temporary tempinvar-19. 

A significant number of loop-invariant address calcula- 
tions are found for the benchmarks water, health, graph- 
ica, nbody and yocr2. They typically arise due to accesses 
to arrays embedded inside (heap allocated) structures. An 
example from the nMybenchmark is shown in Figure 7(b). 

Invariant indirect references (indcolumn) are found in all 
the benchmarks (being pointer intensive). They typically 
arise in nested loops, where the outer loop is traversing the 

nodes of a recursive data structure, and the inner loop op- 
erates on the node itself. Indirect references with respect 
to the node in the inner loop provide opportunities for in- 
variant detection. An example from em&i is shown in Fig- 
ure 7(c) where we find three indirect references with respect 
to the pointer nodelist, invariaut for the inner loop. 

We also lind signiiicant number of expr invariants. It 
might seem that such invariants can be identified even with- 
out pointer analysis, as they only involve scalars. However, 
the scalars could be defined inside the loop, and these def- 
initions may involve pointer expressions, which have to be 
first detected to be invariant. 

We fiudlimited applications of location-invariant removal 
in onr benchmarks. However, they prove to be critical in 
the dynamic context. Opportunities for location invariant 
removal arise mainly due to summation/reduction opera- 
tions. Typical examples include : (i) storing up the sum of 
all node values in the header node, and (ii) an inner loop 
storing the sum of its node values, to the current outer loop 
node. Figure 7(d) shows a loop from the aluinn benchmark 
where location invariant optimization is applied. 

CSE optimization finds numerous applications in all our 
benchmarks, particularly for address calculations and indi- 
rect references. To give further insight, we show represen- 
tative example applications of CSE from different bench- 
marks in Figure 8. Part(a) shows a loop from water where 
repeated array address calculations are eliminated. Part(b) 
shows a loop from health. Here the loop pointer is list, 
however each loop iteration accesses fields of the heap ob- 
ject pointed to by the pointer (*list) .patient. With CSE 
optimization, we compute this pointer only once for each it- 
eration, as opposed to once for every field access (as in the 
original program). Part(c) shows a loop from the bench- 
mark circuit. Here the pointer expression (*ch) .ncolH is 
common for the loop test and the statement advancing the 
loop pointer ch. With CSE optimization we compute the 
expression only once per iteration, as opposed to twice. Fi- 
nally part(d) shows a code fragment from a loop in uor 
where a pointer expression calculated for parameter pass- 
ing is reused later via CSE as the function call does not 
modify its value. 

3.2.2 Benefits of using heap read/write sets 

The data shown in Table 3 is for the case when we use 
both stack and heap read/write sets. In order to measure 
what part is due to the heap analyses, we also applied the 
above optimizations with only stack read/write sets. In 
Table 4 we compare the data for the total number of opti- 
n&&ions applied, for the two cases. The columns labeled 
as S and H respectively give the numbers for the case with 
only stack read/write sets being used (Stack case), and the 
case with both stack and heap read/write sets being used 
(Heap case). 

The number of loop invariants and/or common subex- 
pressions eliminated increases moderately for the Heap 
case, for all the benchmarks (except for &inn that does 
not have any heap references). The Stack case is able to 
detect the majority of the optimization opportunities, for 
two reasons. First, for the case of globals and address ex- 
posed variables, heap read/write information does not bring 
any added advantage. Second, if a loop or code fragment 
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dVilUl 121 01 61 3 010 01 311010 21s 5 
water {I 449 I 26 I 104 I 33 265 t 0 1 t 10 11 0 I 4 111 I 143 202 

I health II 1 

** ., " 1 - - - --, -- 

specear 125 11 2 9 1 55 j/ 13 j 0 j 0 Ij 0 j 0 1 21 621 86 
em3d I 0 01 0 g I 2 II 0 I n I n II ol 0 I ol 21 2 - - - - - - - 

21 11 2 11 47 I 0 1 106 1 149 1 116 1 

temp-iwar- = 
temp-invar-19 = 
for (i = 0; i < 
i InputStateCil 

Table 3: Distribution of Optimizations Applied 

(*input); /* LIR */ 
EarLength; /* LIR */ 
temp-invar-19; i = i + 1) 
= temp-invar-18; 

(a) specear 

temp-79 = (*p).un.cell.subp; /* LIR */ 
for (k = 0; k C= 7; k = k + 1) 
I temp-78 = temp-79Ikl; 

if ((temp,78 ?= 0) ) 
C temp-82 = (dsq / 4.0); 

ualksub-st95(temp-78, temp,82); 
3 

3 
(b) nbody 

while (nodelist *!= 0) if (sender <= end-sender) /* guard */ 
c c 

temp-18 = (*nodelist).frora-nodes; /* LIR */ 
temp_iS = (*nodelist).coeffs; /* LIR */ 
temp-17 = (*nodelist).from-count; /* LIR */ 
for (i = 0; i < temp-i7; 1 . 
$ other-node = temp-‘lS[il; 

coeff = tempJ9Ul; 
value = (*other-node) .vaIue; 
temp-2l = (*modelist) .velue; 
temp-22 = (coeff * value); 
(anodelist).value = temp-21 - temp-22; 
i=i+l; 

3 
nodelist = (*nodelist) .next 

3 
(c) em3d 

temp-invar-2 = (*receiver); /* LcIR */ 
for ( ; (sender <= end-sender) ; ) 
{ temp-31 = temp-invar-2; 

temp-34 = sender; 
sender = (sender + 1); 
temp-33 = (*temp,34) ; 
temp-36 = weight; 
weight = (weight + 1); 
temp-35 = (*temp-36) ; 
temp-32 = (temp-33 * temp-35); 
temp-inver-2 = (temp-31 + temp,32) ; 

3 
(*receiver) = temp-inver,2; 

3 
(d) alvinn 

Figure 7: Examples for Loop Invariants (LIRf and Location Invariants (LcIR) 
does not involve any write to heap, all heap-related knari- 3.2.3 Runtime Improvements 
ants/common subexpressions for it can still be detected read/write sets 
without a heap analysis. . . _ ._ 

with pointor 

The number of location inva&nts increases only for wa- 
ter and health as these are the only benchmarks in which 
heap-related location hwariant expressions arise, along with 
ks. However, the two heap-based location invariants from 
b arise in loops which do not involve any okher write access 
to heap, so they can already be detected without needing 
heap read/write sets. 

As noted above, only with stack read/write sets that 
conservatively estimate the heap, heap-related invari- 
ants/common subexpressions may be detected in savcral 
cases. Ljkewise, it is also possible that an optimizing com- 
piler that conservatively htidles pointer references, could 
also detect many of the optimization opportunities that our 
analyses detect. For example, the CSE transformations 
shown in Figure S{a) can also be performed without any 
pointer analysis information (in fact gee does so). 

In order to measure the additional benefits of our anal- 
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while ( (cnrr-box != 0) ) 
{ temp-14 = (&(*cnrr-box) .coord) ; 

i = tempJ4COl; 
temp-15 = temp-14; /* CSE */ 
j = temp-15 Cl1 ; 
temp-16 = temp,14; /* CSE */ 
k = tempJ6[21; 
. . . /* statements deleted */ 
curr,box = (*cnrr-box) .next-box; 

3 

(a) water 

temp-234 = (*ch).ncolH; 
temp,cse-2 = temp-234; 
while ( (temp-234 != 0) ) 
{ temp-235 = (*ch).col; 

mapUnk Ctemp-2351 = (*ch) . whichUnknown; 
ch = temp-cse-2; /* CSE */ 
temp-234 = (*ch).ncolH; 
temp-cse,2 = temp-234; 

3 
(c) cimlit 

while ( (list ?= 0) ) 
{ temp-43 = (*list) .patient; 

temp-44 = (*temp-43). time-left ; 
if ((temp-44 = 0)) 
x f.. /* statements deleted */ 

temp-57 = temp-43; /* CSE */ 
(*temp-57) .time-left = 10; 
temp-58 = temp-43; /* CSE */ 
temp-59 = (*temp-58) -time; 
. . . /* statements deleted */ 

3 
list = (*list) .foruard; 

3 
(b) health 

temp-62 = (*act).vl; 
temp-63 = (*n) .vl; 
temp-61 = point-equal(temp-62, temp-63) ; 
if ((temp-61 != 0)) 
( p = (*act> .v2; 

3 
else 
< p = temp-62; /* CSE */ 

3 

(4 vor 

power 11 4 1 6 

Figure 8: Common Subexpression Elimination (GE) Examples 
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Table 4: Total Optimizations Applied 

yses over a state-of-the-art optimizing compiler, we have 
compared our results with the GNU C compiler [30] (gee 
version 2.7.2) working at the highest level of optimization 
(with -03 flag). S ince our transformations are source-to- 
source and are performed at the SIMPLE intermediate rep- 
resentation, we performed the following experiment. We 
produced three sources for each benchmark program: (i) the 
dump of the SIMPLE representation of the program (plain 
version), (ii) the dump of the SIMPLE representation of the 
program after the above three optimizations are applied 
with only stack read/write sets (Sopt version), and (iii) the 
optimized dump with both stack and heap read/write sets 
being used (Hopt version). The SIMPLE dumps are just sim- 
plified C programs which can be compiled by any native C 
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compiler. 
Next, we compile all three versions with the gee compiler 

with -03 optimization flag, and compare the run-time per- 
formance of the opt versions over the plain version. Note 
that any difference in the performance can be solely at- 
tributed to our sourc&o-source transformations. We col- 
lected the following run-time statistics: 

l The total number of memory references made during 
program execution. This is an important metric as 
the main effect of applying the above optimizations on 
pointer expressions, globals and address exposed vari- 
ables, should be the reduction of memory references. 

l The total number of instructions executed. This re- 

l 

fleets how many instructions could be eliminated due 
to loop invariant removal Also these source-to-source 
optimizationz can enable the compiler to be less con- 
servative and produce better code, which can lead to 
a reduction in number of instructions. 

The run time of the program measured using the 
/usr/bin/time utility on an UItraSparc machine with 
only single user logged on. The run time was calcu- 
lated az the sum of the system and user time reported 
by the time utility. Also the run time was averaged 
over three runs of the program. 

We collected the first two statistics using the EEL [23] 
based QPT2 tool from Jim Larus, which instruments the 
program executable to give exact counts. However, note 
that run time reported is not from the QPT2-instrumented 
versions of the executables. 

The comparison of the above statistics is presented in Ta- 
ble 5. The three multicohmms labeled “‘Mem Hefs”, “Insns” 



and “Run Time” respectively give the data regarding the 
number of memory references made, number of instructions 
executed and the run iime. The columns Iabeled “Sopt” 
and “Hopt” in the multicolumns labeled “%Decrease” re- 
spectively give the percentage decrease achieved in number 
of memory references or instructions executed, by the Sopt 
and Hopt versions over the plain version. The coIumns la- 
beIed “Abs Deer” give the actual decrease in the number 
of memory references/instructions (in naillions) achieved by 
the Hopt version over the plain version. Finally, in the “Run 
Time” multicolumn, the first column (labeled ‘Base Time”) 
gives the run time in seconds for the plain version. The next 
two columns respectively show the percentage speedup ob- 
tained by the Sopt and Hopt versions over the plain version. 
The main observations from this table are discussed below. 

The optimized versions achieve a significant reduction in 
the number of memory references. The highest is 35.56% 
for aluinn, while six other benchmarks achieve greater than 
7% reduction. For afvinn, the main factor proves to be the 
location-invariant removal shown in ,Figure 7(d), that ap- 
plies to three critical inner loops. For specear, the pointer- 
based array reference stateCi+l] arises twice (on rhs) in 
its critical loop in function age. Between the two references 
there is a write via another pointer-based array reference 
output [il. Without pointer information gee is not able to 
apply CSE across this write, while we can, and this brings 
most of the reduction. 

For other benchmarks, invariants Fd common subex- 
pressions spread all across the program contribute. Finally, 
for the potter benchmark we actually see an increase in the 
number of memory references, despite the numerous appli- 
cations of all optimizations (Table 4). This happens be- 
cause in this benchmark some pointer expressions remain 
invariant through a function and are used all across it. Via 
CSE, all but the first occurence of this expression are substi- 
tuted with a temporary. Such temporaries end up having 
long lifetimes, causing the register allocator to introduce 
spills, and perform worse than original. 

The above observations highlight the applicability of our 
optimizations to pointer expressions in particular- They 
also indicate that there may not always be a direct correla- 
tion between the number of times optimizations are applied 
and the actual run time improvements. 

For five benchmarks, 4% to 11% reduction is achieved 
in the number of instructions executed. Again, for sople 
benchmarks we see an increase in&e&d. This happens- due 
to pulling out invariant expressions, which either belong to 
an infrequently executed loop, or an infrequently executed 
path inside the given loop. 

The percentage decrease figures are always equal or 
higher for the Hopt version compared to the Sopt version, 
with the difference being most marked for health and signif- 
icant for graphics, circuit and em3d. All these benchmarks 
use recursive heap data structures, so heap read/write set+ 
bring added benefits. 

We see run time speedup of 10.30% for aIvinn, 8.31% for 
vor, 6.08% for water and 4.26% for yacr!?. These speedup 
figures are quite significant in the context of our scalar opti- 
mizations. Further they are achieved over “gee -03”. While 
reduction in memory references and instructions executed, 
always translates into a speedup, the speedup obtained is 
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not always in direct proportion. For example, for yacrd and 
uor, the percentage decrease figures are much less than for 
hearth or circuit. The reason they obtain better speedup 
is that our source-to-source transformations sometimes en- 
able the native C compiler’ to perform better instruction 
scheduling due to substitution of pointer references with 
scalars (this happens for these benchmarks). For the same’ 
reason, even with the same instruction and memory refcr- 
ence counts, the Hopt version for specear achieves better 
speedup than the Sopt version. 

We have also studied the effects of our optimizations 
in the context of parallelized programs for the EARTH- 
MANNA multithreaded architecture. Here pointer refer- 
ences mostly involve remote memory accesses. So applying 
LIR, LcIR and CSE to such references results in even batter 
savings, giving upto 25% speedup 1321. 

3.3 Improving Array Dependence Tests 

Scientific applications written in C also use arrays as 
principal data structures. However, unlike FORTRAN, 
these arrays are mostly implemented using pointers to 
dynamically-allocated storage. tither even statically- 
allocated Gays are often passed as pointer parameters. 
The pointer-based array references pose new problems for 
the array dependence tester (ADTJ. Consider the following 
simple example Ioop: 

for (i = 1; i < 100; i++) 
i S: aCi3 = aCi] + i; 

T: c[il = b[i-13 + aEi]; 
3 

If the variables a, b and c are static integer arrays (de- 
clared as int aUOO1, btlOO1, c~iOOl), the ADT can cas- 
ily identify that the loop has a flow dependence from S 
to T, but no loop-carried dependences. However, if these 
variabIes are declared as integer pointers which point to 
dynamically-allocated storage or to statically-allocated ar- 
rays, the situation becomes more complex. Now, the ADT 
cannot assume that two syntacticalIydifferent array refer- 
ences are always independent. For example, if a and b point 
to the same heap object/static array, we have a loop-carried 
flow dependence from S to T. Using our pointer analyses, 
we can easily check against such possibilities. For the above 
loop, if either a, b and c point to different static arrays, 
or if the anchor handles aQS, cQT, and bOT are not con- 
nected with each other, the situation becomes identical to 
the static case. 

We have measured the effectiveness of our pointer anal- 
yses for more precise ADT, using a set of array-based C 
programs (described in Table I). For each benchmark, lvvo 
collected the following ADT statistics: (i) the humber of ar- 
ray pairs tested, (ii) the number of dependences detected, 
&d (iii) the number of ford loops found using the ADT 
results. Clearly, one would like to eliminate as many depen- 
dence tests as possible, since each test is potentially expen- 
sive, and spurious tests may lead to spurious dependences. 
Reducing the number of dependences is beneficial both for 
better fine-grain parallelism, and for exposing more ford 
loops. More ford loops lead to more coarse-grain paral- 
lelism. 



I Prosram II Mem Refs II hlsus II Run Time I - - -Q- ~~~~~ 

%Decrease Abs %Decrease Abs Base %Speedup 
sopt Hopt Deer Sopt Hopt Deer ,Time sopt Hopt 

alvinu 35.56 35.56 684.92 11.64 11.64 682.04 42.70 10.30 10.30 
water 15.59 15.64 388.16 4.50 4.51 407.13 64.10 5.77 6.08 
health 0.00 15.41 135.27 -0.35 5.00 122.01 139.30 -1.87 1.36 
graphics 12.41 14.32 t 236.30 t 7.87 9.08 1 236.10 t 42.40 1.89 3.07 

i 

circuit II 

ks 
vor 
power 

2.01 2.01 36.64 0.71 0.71 37.09 43.90 0.91 0.91 
0.17 0.93 9.50 0.02 0.13 5.51 78.20 6.65 8.31 

-0.01 -0.17 -0.41 -0.01 -0.05 -0.44 12.70 0.00 0.00 

Table 5: Dynamic Improvements over gee -03 

The data is shown in Table 6. The columns labeled P 
and H respectively show the numbers for ADT without 
any pointer information, and with both points-to and con- 
nection information. One can see a significant reduction 
in both array pairs tested and dependences detected. We 
are also able to find more foraIl loops for specear, nrcode2, 
Mocb2 and aluinn. These results indicate that pointer 
analyses can make ADT considerably more effective. In 
fact, some commercial compilers Iike pgcc (from Portland 
Group Inc) provide pragmas to get similar iuformation (Iike 
-Msafeptr for the user to indicate that certain pointers do 
not share storage with other pointers/arrays). Fiiy, for 
the other three benchmarks, the array dependences broken 
fall into loops which are actually not forall loops. So we do 
not see an increase for them. 

Program Pairs 11 Deps 11 Forall 
P 1 H 11 P 1 H 11 P 1 H 

Table 6: Results for Array Dependence Analysis 

3.4 frogram Understanding/Debugging 
Our summary read/write information can also be 

used as a program uuderstauding/debugging aid. For 
example, consider a procedure foo (struct list *a, 
struct tree *b), with the foIlowing summary informa- 
tion: HeapWrite(foo) = (aQf oo->index, bQf oo->left , 
bQf oo->right} and HeapRead(foo) = {aQf oo->index, 
aQfoo->next, bQfoo->left, bQfoo->right). 

Based on this information we can make interesting obser- 
vations about the effect of function foo on the data struc- 
tures passed to it. The absence of aQfoo-lnext in the 
HeapWrite set indicates that the function does not affect 

the structure of the list (does not add/delete nodes), and 
that it onIy modifies the scalar field index of some or ah 
the nodes in the list (aQfoo->index E HeapWrite(foo)). 

On the contrary, the presence of bQfoo->left and 
bQf oo->rigbt in the HeapWrite set indicates that the left 
and/or right pointer fieIds are modified for some nodes 
of the tree. This could imply that either new nodes have 
been added to the tree, or some nodes have been deleted, or 
some nodes have simply swapped their children. According 
to our experience with benchmarks, the usefuI information 
is again the negative information: which tieIds are not up- 
dated by the given function, with information about the 
lint pointer fields being specially useful. Also, due to the 
hierarchiical nature of our read/write sets, such information 
cau be obtained with respect to other program constructs 
Iike loops, conditionals and function calls. 

To nicely display such information to the user, we have 
developed a tool that uses a Web browser. We modified 
our c-dump utility to produce H~h-n. version of the pro- 
gram, with each statement decorated with a hyperliuk to 
a CGI script passing the unique statement ID as a hidden 
parameter. We aLso produced compressed f&s containing 
the pointer analysis, and read/write sets information for 
each statement along with its ID. We use three frames in 
the browser. The top frame displays the kinds of infor- 
mation avaiIable and the user has to chck at the appropri- 
ate Iink to see a given flow information. This sets the the 
fiIe containing the information as the current infofile. The 
left frame displays the program itself. The right frame is 
used as the workspace. When user clicks on a statement 
or a function, the CGI script (written in perl) is invoked 
with the statement/function ID as its argument. It looks 
for this ID in the current infofile and displays the infor- 
mation associated with it in a user friendly form in the 
right frame. The information displayed also has interest- 
ing hypertext links (clicking on a field displays the deli- 
nition of its structure type). Further, clicking at a func- 
tion prototype or a function call, takes one to the function 
body. The reader can use this tool by visiting the Web page 
http://sucr-acaps.cs.mcgill.ca/“ghiya/info.htnl. 

- The summary read/write information can also be used 

131 



to guide data p&etching for recursive heap data struc- 
tures [24], as it indicates which fields are potentially ac- 
cessed with respect to a pointer, inside a Function or a loop. 
So prefetch instructions can be placed for these fields at 
function/Ioop entry. Also one can .avoid pyfetching fields 
that are reported to be not used, thus reducing the prefetch 
overhead. Similarly read onlyfield accesses can be consid- 
ered 5s run time constants, which is a’very useful inForma- 
tion in a dynamic compilation &text [Z]. 

Another direct application of connection information is 
identification of potential memory leaks. When a heap 
directed pointer p is updated, and no other fiue pointer is 
connected to it, the heap storage accessible from p will be- 
come inaccessible by the program. The programmer can be 
warned of a potential memory kak at the given statement. 

4 Related Work 
As summarized in the introduction, a considerable 

amount of work has been done on the problem of pointer 
analysis itself, and a detailed description can be found 
in [ll]. In this section we concentrate on s&marking 
methods that use the results of pointer analysis. 

Laudi et al. [ZO] and Choi et al. [6], proposed ap- 
proaches for computing side-effect information (read/write 
sets) in the presence of pointers. These approaches use 
stack-based alias analysis. With a points-to representation 
[lo, 26, 31, 331, where &!I locations have names, comput- 
ing read/write sets is quite straightforward and only slight 
modifications of standard transformations are needed as 
shown in section 2.1. We assume that other compilers with 
points-to analyses have similar applications. 

More directly related to this paper are methods that use 
the results of heap analysis. Work in this area has been 
primarily focused on dependence analysis and paralleliza- 
tion. The important approaches include: techniques using 
path expressions to name locations 1221, using syntax trees 
to name locations [14], extending k-limited graphs with lo- 
cation names[l7]; and dependence testing based on access 
paths and theorem proving [IS]. These approaches attempt 
to perform very accurate analysis, and reason about differ- 
ent parts of the same data structure (for example, determin- 
ing if x->left->right possibly refers to the same location 
as x->right->right or not). We have taken a more general 
view of the potential uses of heap analysis, and have based 
our method on a more coarse-grain heap analysis that can 
distinguish between two data structures, but not references 
within the same data structure. 

in terms of using the improved read/write sets from 
pointer analysis, for other analyses aud transformations, 
the most relevant. related work is of Wilson and Lam 1331, 
Shapiro and Horwitz 1281, and Cooper and Lu f7]. Wil- 
son and Lam used pointer analysis results for loop paral- 
lelization. Shapiro and Horwitz study the effects of various 
flow-insensitive pointer analyses on the efficiency and preci- 
sion of other anaIyses like live variable analysis and GMOD 
analysis, but not on actual program transformations. 

Cooper and Lu study the benefits OF pointer analysis in 
the context of register promotion. Their work focuses on 
promoting address exposed and global variables to registers 
inside loops when possible. They also describe a technique 
similar to location invariant removal to enregister pointer- 
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based array references. Their empirical results also in&- 
cate a sign&ant decrease in memory references For some 
programs, but no significant speedup. Their work can be 
considered a subset of our study as we do not focus on only 
loops, use a more precise heap analysis (they use malloc- 
site naming approach), and finally, we provide real run- 
time speedups over a state-of-the-art optimizing compiler 
as against comparing the number of operations executed 
collected via a simulator. 

5 Conclusions and Future Work 
This paper has focused on how to put pointer a&y- 

sis to work. We demonstrated that the fundamental com- 
ponent is computing read/write sets. We briefly summn- 
rized the computation of read/sets from points-to analysis, 
a store-based analysis that focuses on stack-directed point- 
ers. More importantly, we have provided a new method for 
computing read/write sets for connection analysis, which is 
a storeless heap analysis. In order to achieve this WC in- 
troduced the notion of anchor handIes, and read/write sets 
based on anchor handles. 

Based on both the stack and heap read/write sets, we 
demonstrated a wide variety of applications. We provided 
a description of several scaIar optimizations that cau in- 
dude optimizations of computations using pointers. We 
provided extensive static and dynamic measurements, in- 
cluding measuring runtime improvement due to the scalar 
optimizations. We also examined the effect of accurate 
read/write sets on array dependence testers, and outlined 
several other uses of read/write sets, including program un- 
derstanding via a tool that interfaces with Web browsers. 
We believe that our results show that pointer analysis is an 
important part of an optimizing C compiler, and that one 
can achieve significant benefits from such an analysis. 

Our future work will be in three major directions. Firstly, 
we plan to study the effect OF stack and heap rend/write 
sets on fine-grain parallelism and instruction scheduling. 
Secondly, we would like to compare the benefit of context- 
sensitive, flow-sensitive analyses (as presented in this paper) 
vs. flow-insensitive analyses. Finally, we plan to continue 
to develop new transformations for pointer-intensive pro- 
grams. 
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