
Continuous Profiling: Where Have All the
Cycles Gone?

JENNIFER M. ANDERSON, LANCE M. BERC, JEFFREY DEAN, SANJAY
GHEMAWAT, MONIKA R. HENZINGER, SHUN-TAK A. LEUNG, RICHARD
L. SITES, MARK T. VANDEVOORDE, CARL A. WALDSPURGER, and
WILLIAM E. WEIHL
Digital Equipment Corporation

This article describes the Digital Continuous Profiling Infrastructure, a sampling-based
profiling system designed to run continuously on production systems. The system supports
multiprocessors, works on unmodified executables, and collects profiles for entire systems,
including user programs, shared libraries, and the operating system kernel. Samples are
collected at a high rate (over 5200 samples/sec. per 333MHz processor), yet with low overhead
(1–3% slowdown for most workloads). Analysis tools supplied with the profiling system use the
sample data to produce a precise and accurate accounting, down to the level of pipeline stalls
incurred by individual instructions, of where time is being spent. When instructions incur
stalls, the tools identify possible reasons, such as cache misses, branch mispredictions, and
functional unit contention. The fine-grained instruction-level analysis guides users and
automated optimizers to the causes of performance problems and provides important insights
for fixing them.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of
Systems; D.2.2 [Software Engineering]: Tools and Techniques—profiling tools; D.2.6 [Pro-
gramming Languages]: Programming Environments—performance monitoring; D.4 [Oper-
ating Systems]: General; D.4.7 [Operating Systems]: Organization and Design; D.4.8
[Operating Systems]: Performance

General Terms: Performance

Additional Key Words and Phrases: Profiling, performance understanding, program analysis,
performance-monitoring hardware

An earlier version of this article appeared at the 16th ACM Symposium on Operating System
Principles (SOSP), St. Malo, France, Oct., 1997.
Authors’ addresses: J. M. Anderson and J. Dean, Digital Equipment Corp., Western Research
Laboratory, 250 University Avenue, Palo Alto, CA 94301; email: {jennifer; jdean}@pa.dec.com;
L. M. Berc, S. Ghemawat, M. R. Henzinger, S.-T. A. Leung, M. T. Vandevoorde, C. A.
Waldspurger, and W. E. Weihl, Digital Equipment Corp., Systems Research Center, 130
Lytton Avenue, Palo Alto, CA 94301; email: {berc; sanjay; monika; sleung; mtv; caw;
weihl}@pa.dec.com; R. L. Sites, Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA
95110-2704; email: dsites@adobe.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 0734-2071/97/1100–0357 $03.50

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997, Pages 357–390.

1. INTRODUCTION

The performance of programs running on modern high-performance com-
puter systems is often hard to understand. Processor pipelines are complex,
and memory system effects have a significant impact on performance.
When a single program or an entire system does not perform as well as
desired or expected, it can be difficult to pinpoint the reasons. The Digital
Continuous Profiling Infrastructure provides an efficient and accurate way
of answering such questions.

The system consists of two parts, each with novel features: (1) a data
collection subsystem that samples program counters and records them in
an on-disk database and (2) a suite of analysis tools that analyze the stored
profile information at several levels, from the fraction of CPU time con-
sumed by each program to the number of stall cycles for each individual
instruction. The information produced by the analysis tools guides users to
time-critical sections of code and explains in detail the static and dynamic
delays incurred by each instruction.

We faced two major challenges in designing and implementing our
profiling system: efficient data collection for a very high sampling rate and
the identification and classification of processor stalls from program-
counter samples. The data collection system uses periodic interrupts gener-
ated by performance counters available on Digital Alpha processors to
sample program-counter values. (Other processors, such as Intel’s Pentium
Pro and SGI’s R10K, also have similar hardware support.) Profiles are
collected for unmodified executables, and all code is profiled, including
applications, shared libraries, device drivers, and the kernel. Thousands of
samples are gathered each second, allowing useful profiles to be gathered
in a relatively short time. Profiling is also efficient: overhead is about 1–3%
of the processor time, depending on the workload. This permits the profil-
ing system to be run continuously on production systems and improves the
quality of the profiles by minimizing the perturbation of the system
induced by profiling.

The collected profiles contain time-biased samples of program-counter
values: the number of samples associated with a particular program-
counter value is proportional to the total time spent executing that instruc-
tion. Samples that show the relative number of cache misses, branch
mispredictions, etc. incurred by individual instructions may also be col-
lected if the processor’s performance counters support such events.

Some of the analysis tools use the collected samples to generate the usual
histograms of time spent per image, per procedure, per source line, or per
instruction. Other analysis tools use a detailed machine model and heuris-
tics described in Section 6 to convert time-biased samples into the average
number of cycles spent executing each instruction, the number of times
each instruction was executed, and possible explanations for any static or
dynamic stalls. Our techniques can deduce this information entirely from
the time-biased program-counter profiles and the binary executable, al-

358 • Jennifer M. Anderson et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

though the other types of samples, if available, may also be used to improve
the accuracy of the results.

Section 3 contains several examples of the output from our tools. As
discussed there, the combination of fine-grained instruction-level analysis
and detailed profiling of long-running workloads has produced insights into
performance that are difficult to achieve with other tools. These insights
have been used to improve the performance of several major commercial
applications.

The output of the analysis tools can be used directly by programmers; it
can also be fed into compilers, linkers, postlinkers, and run-time optimiza-
tion tools. The profiling system is freely available on the Web;1 it has been
running on Digital Alpha processors under Digital Unix since September,
1996, and ports are in progress to Alpha/NT and Open VMS. Work is under
way to feed the output of our tools into Digital’s optimizing backend
[Blickstein et al. 1992] and into the Spike/OM postlinker optimization
framework [Cohn and Lowney 1996; Cohn et al. 1997]. We are also
studying new kinds of profile-driven optimizations made possible by the
fine-grained instruction-level profile information provided by our system.

Section 2 discusses other profiling systems. Section 3 illustrates the use
of our system. Sections 4 and 5 describe the design and performance of our
data collection system, highlighting the techniques used to achieve low
overhead with a high sampling rate. Section 6 describes the subtle and
interesting techniques used in our analysis tools, explaining how to derive
each instruction’s CPI, execution frequency, and explanations for stalls
from the raw sample counts. Finally, Section 7 discusses future work, and
Section 8 summarizes our results.

2. RELATED WORK

Few other profiling systems can monitor complete system activity with
high-frequency sampling and low overhead; only ours and Morph [Zhang et
al. 1997] are designed to run continuously for long periods on production
systems, something that is essential for obtaining useful profiles of large
complex applications such as databases. In addition, we know of no other
system that can analyze time-biased samples to produce accurate fine-
grained information about the number of cycles taken by each instruction
and the reasons for stalls; the only other tools that can produce similar
information use simulators, at much higher cost.

Table I compares several profiling systems. The overhead column de-
scribes how much profiling slows down the target program; low overhead is
defined arbitrarily as less than 20%. The scope column shows whether the
profiling system is restricted to a single application (app) or can measure
full system activity (sys). The grain column indicates the range over which
an individual measurement applies. For example, gprof counts procedure
executions, whereas pixie can count executions of each instruction; prof

1http://www.research.digital.com/SRC/dcpi/

Continuous Profiling • 359

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

goes even further and reports the time spent executing each instruction,
which, given the wide variations in latencies of different instructions, is
often more useful than just an execution count. The stalls column indicates
whether and how well the system can subdivide the time spent at an
instruction into components like cache miss latency, branch misprediction
delays, etc.

The systems fall into two groups. The first includes pixie [MIPS 1990],
gprof [Graham et al. 1982], jprof [Reiser and Skudlarek 1994], quartz
[Anderson and Lazowska 1990], MTOOL [Goldberg and Hennessy 1993],
SimOS [Rosenblum et al. 1995], part of SGI’s SpeedShop [Zagha et al.
1996], and Intel’s VTune dynamic analyzer.2 These systems use binary
modification, compiler support, or direct simulation of programs to gather
measurements. They all have high overhead and usually require significant
user intervention. The slowdown is too large for continuous measurements
during production use, despite techniques that reduce instrumentation
overhead substantially [Ball and Larus 1994]. In addition, only the simula-
tion-based systems provide accurate information about the locations and
causes of stalls.

The systems in the second group use statistical sampling to collect
fine-grained information on program or system behavior. Some sampling
systems, including Morph, prof,3 and part of SpeedShop, rely on an existing
source of interrupts (e.g., timer interrupts) to generate program-counter
samples. This prevents them from sampling within those interrupt routines
and can also result in correlations between the sampling and other system
activity. By using hardware performance counters and randomizing the
interval between samples, we are able to sample activity within essentially
the entire system (except for our interrupt handler itself) and to avoid

2http://developer.intel.com/design/perftool/vtune/
3prof. Digital Unix man page.

Table I. Profiling Systems

System Overhead Scope Grain Stalls

pixie high app inst count none
gprof high app proc count none
jprof high app proc count none
quartz high app proc count none
MTOOL high app inst count/time inaccurate
SimOS high sys inst time accurate
SpeedShop (pixie) high app inst count none
VTune (dynamic) high app inst time accurate
prof low app inst time none
iprobe high sys inst time inaccurate
Morph low sys inst time none
VTune (sampler) low sys inst time inaccurate
SpeedShop (timer

and counters)
low sys inst time inaccurate

DCPI low sys inst time accurate

360 • Jennifer M. Anderson et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

correlations with any other activity. This issue is discussed further in
Section 4.1.1.

Other systems that use performance counters, including iprobe,4 the
VTune sampler, and part of SpeedShop, share some of the characteristics of
our system. However, iprobe and VTune cannot be used for continuous
profiling, mostly because they need a lot of memory for sample data. In
addition, iprobe, the VTune sampler, and SpeedShop all are unable to map
the sample data accurately back to individual instructions. In contrast, our
tools produce an accurate accounting of stall cycles incurred by each
instruction and the potential reason(s) for the stalls.

3. DATA ANALYSIS EXAMPLES

To illustrate the range of information our system can provide, this section
provides several examples of its use. Our system has been used to analyze
and improve the performance of a wide range of complex commercial
applications, including graphics systems, databases, industry benchmark
suites, and compilers. For example, our tools pinpointed a performance
problem in a commercial database system; fixing the problem reduced the
response time of a particular SQL query from 180 to 14 hours. In another
example, our tools’ fine-grained instruction-level analyses identified oppor-
tunities to improve optimized code produced by Digital’s compiler, speeding
up the mgrid SPECfp95 benchmark by 15%.

Our system includes a large suite of tools to analyze profiles at different
levels of detail. In this section, we present several examples of the following
tools:

—dcpiprof: Displays the number of samples per procedure (or per image).
—dcpicalc: Calculates the cycles-per-instruction and basic-block execution

frequencies of a procedure and shows possible causes for stalls (see
Section 6).

—dcpistats: Analyzes the variations in profile data from many runs.

Other tools annotate source and assembly code with sample counts, high-
light the differences in two separate profiles for the same program, summa-
rize where time is spent in an entire program (the percentage of cycles
spent waiting for data-cache misses, etc.; see Figure 4 for an example of
this kind of summary for a single procedure), translate profile data into
pixie format, and produce formatted PostScript output of annotated con-
trol-flow graphs.

3.1 Procedure-Level Bottlenecks

Dcpiprof provides a high-level view of the performance of a workload. It
reads the profile data gathered by the system and displays a listing of the
number of samples per procedure, sorted by decreasing number of samples.
(It can also list the samples by image, rather than by procedure.) Figure 1

4iprobe. Digital internal tool.

Continuous Profiling • 361

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

shows the first few lines of the output of dcpiprof for a run of x11perf, an
X11 drawing benchmark. For example, the ffb8ZeroPolyArc routine ac-
counts for 33.87% of the cycles for this workload. Notice that this profile
includes code in the kernel (/vmunix) as well as code in shared libraries.
The figure also has columns for the cumulative percent of cycle samples
consumed by the procedure and all those preceding it in the listing, as well
as information about the total number and fraction of instruction cache
miss samples that occurred in each procedure.

3.2 Instruction-Level Bottlenecks

Dcpicalc provides a detailed view of the time spent on each instruction in a
procedure. Figure 2 illustrates the output of dcpicalc for the key basic block
in a McCalpin-like copy benchmark [McCalpin 1995], running on an
AlphaStation 500 5/333. The copy benchmark runs the following loop where
n 5 2,000,000 and where the array elements are 64-bit integers:

for (i 5 0; i , n; i 11)
c[i] 5 a[i];

The compiler has unrolled the loop four times, resulting in four loads and
stores per iteration. The generated code shown in Figure 2 drives the
memory system at full speed.

At the beginning of the basic block, dcpicalc shows summary information
for the block. The first two lines display the best-case and actual cycles per
instruction (CPI) for the block. The best-case scenario includes all stalls
statically predictable from the instruction stream, but assumes that there
are no dynamic stalls (e.g., all load instructions hit in the D-cache). For the
copy benchmark, we see that the actual CPI is quite high at 10.77, whereas
the best theoretical CPI (if no dynamic stalls occurred) is only 0.62. This
shows that dynamic stalls are the significant performance problem for this
basic block.

Dcpicalc also lists the instructions in the basic block, annotated with
information about the stall cycles (and program source code, if the image

Fig. 1. The key procedures for an x11perf run.

362 • Jennifer M. Anderson et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

contains line number information). Above each assembly instruction that
stalls, dcpicalc inserts bubbles to show the duration and possible cause of
the stall. Each line of assembly code shows, from left to right, the instruc-
tion’s address, the instruction, the number of PC samples at this instruc-
tion, the average number of cycles this instruction spent at the head of the
issue queue (stalled or not), and the addresses of other instructions that
may have caused this instruction to stall. Note that Alpha load and
load-address instructions write their first operand; three-register operators
write their third operand.

Each line in the listing represents a half-cycle, so it is easy to see if
instructions are being dual-issued. In the figure, we see that there are two
large stalls, one for 18.0 cycles at instruction 009828 and another for 114.5
cycles at instruction 009834. The letters dwD before the stalled stq
instruction at 009828 indicate three possible reasons: a D-cache miss
incurred by the ldq at 009810 (which provides the data needed by the stq),
a write-buffer overflow, or a data TLB (DTB) miss. The stq instruction at
009834 is also stalled for the same three possible reasons. The lines labeled
s indicate static stalls due to slotting hazards; in this case they are caused
by the 21164 not being able to dual-issue adjacent stq instructions.
Dcpicalc identifies these reasons by analyzing the instructions and the
time-biased program-counter samples, without monitoring other events like
cache misses.

Fig. 2. Analysis of copy loop.

Continuous Profiling • 363

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

As expected, the listing shows that as the copy loop streams through the
data the performance bottleneck is mostly due to memory latency. Also, the
six-entry write buffer on the 21164 is not able to retire the writes fast
enough to keep up with the computation. DTB miss is perhaps not a real
problem, since the loop walks through each page and may incur DTB
misses only when crossing a page boundary. It would have been ruled out if
samples for DTB miss events had been collected. Since they are not in this
particular experiment (they are not collected by default), dcpicalc lists DTB
miss as a possibility because it is designed to assume the worst unless the
data indicate otherwise. Section 6.3 discusses this further.

3.3 Analyzing Variance Across Program Executions

Several benchmarks that we used to analyze the performance of the data
collection system showed a noticeable variance in running times across
different runs. We used our tools to examine one of these benchmarks,
wave5 from the sequential SPECfp95 workload, in more detail.

We ran wave5 on an AlphaStation 500 5/333 and observed running times
that varied by as much as 11%. We ran dcpistats on eight sets of sample
files to isolate the procedures that had the greatest variance; dcpistats
reads multiple sets of sample files and computes statistics comparing the
profile data in the different sets. The output of dcpistats for wave5 is shown
in Figure 3.

The figure shows the procedures in the wave5 program, sorted by the
normalized range, i.e., the difference between the maximum and minimum
sample counts for that procedure, divided by the sum of the samples. We
see that the procedure smooth had a much larger range than any of the
other procedures.

Next, we ran dcpicalc on smooth for each profile, obtaining a summary
of the fraction of cycles consumed by each type of dynamic and static stall
within the procedure. The summary for the fastest run (the profile with the
fewest samples) is shown in Figure 4. The summary for the slowest run (not
shown) shows that the percentages of stall cycles attributed to D-cache
miss, DTB miss, and write buffer overflow increase dramatically to 44.8–

Fig. 3. Statistics across eight runs of the SPECfp95 benchmark wave5.

364 • Jennifer M. Anderson et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

44.9%, 14.0–33.9%, and 0.0–18.3% respectively. The increase is probably in
part due to differences in the virtual-to-physical page mapping across the
different runs—if different data items are located on pages that map to the
same location in the physically addressed board cache (the L3 cache on the
21164), the number of conflict misses will increase.

4. DATA COLLECTION SYSTEM

The analysis tools described in the previous section rely on profiles gath-
ered as the workload executes. To gather these profiles, the Digital Contin-
uous Profiling Infrastructure periodically samples the program-counter
(PC) on each processor, associates each sample with its corresponding
executable image, and saves the samples on disk in compact profiles. The
key to our system’s ability to support high-frequency continuous profiling is
its efficiency: it uses about 1–3% of the CPU and modest amounts of
memory and disk. This is the direct result of careful design.

Fig. 4. Summary of how cycles are spent in the procedure smooth for the fast run of the
SPECfp95 benchmark wave5.

Continuous Profiling • 365

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

Sampling relies on the Alpha processor’s performance counter hardware
to count various events, such as cycles and cache misses, for all instructions
executed on the processor. Each processor generates a high-priority inter-
rupt after a specified number of events has occurred, allowing the inter-
rupted instruction and other context to be captured. Over time, the system
gathers more and more samples, which provide an accurate statistical
picture of the total number of events associated with each instruction in
every executable image run on the system. (There are a few blind spots in
uninterruptible code; however, all other code is profiled, unlike systems
that rely on the real-time clock interrupt or other existing system functions
to obtain samples.) The accumulated samples can then be analyzed, as
discussed in Section 6, to reveal useful performance metrics at various
levels of abstraction, including execution counts and the average number of
stall cycles for each instruction, as shown in Section 3.

Figure 5 shows an overview of the data collection system. At an abstract
level, the system consists of three interacting components: a kernel device
driver that services performance counter interrupts; a user-mode daemon
process that extracts samples from the driver, associates them with execut-
able images, and merges them into a nonvolatile profile database; and a
modified system loader and other mechanisms for identifying executable
images and where they are loaded by each running process. The rest of this
section describes these pieces in more detail, beginning with the hardware
performance counters.

4.1 Alpha Performance Counters

Alpha processors [Digital 1995a; 1995b] provide a small set of hardware
performance counters that can each be configured to count a specified
event. The precise number of counters, set of supported events, and other
interface details vary across Alpha processor implementations. However,
all existing Alpha processors can count a wide range of interesting events,

Fig. 5. Data collection system overview.

366 • Jennifer M. Anderson et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

including processor clock cycles (CYCLES), instruction cache misses
(IMISS), data cache misses (DMISS), and branch mispredictions
(BRANCHMP).

When a performance counter overflows, it generates a high-priority
interrupt that delivers the PC of the next instruction to be executed
[Digital 1995a; Sites and Witek 1995] and the identity of the overflowing
counter. When the device driver handles this interrupt, it records the
process identifier (PID) of the interrupted process, the PC delivered by the
interrupt, and the event type that caused the interrupt.

Our system’s default configuration monitors CYCLES and IMISS
events.5 Monitoring CYCLES results in periodic samples of the program-
counter, showing the total time spent on each instruction. Monitoring
IMISS events reveals the number of times each instruction misses in the
instruction cache. Our system can also be configured to monitor other
events (e.g., DMISS and BRANCHMP), giving more detailed information
about the causes for dynamic stalls. Since only a limited number of events
can be monitored simultaneously (two on the 21064 and three on the
21164), our system also supports time-multiplexing among different events
at a very fine grain. (SGI’s SpeedShop [Zagha et al. 1996] provides a
similar multiplexing capability.)

4.1.1 Sampling Period. Performance counters can be configured to
overflow at different values; legal settings vary on different Alpha proces-
sors. When monitoring CYCLES on the Alpha 21064, interinterrupts can be
generated every 64K events or every 4K events. On the 21164, each 16-bit
performance counter register is writable, allowing any interrupt period up
to the maximum of 64K events to be chosen. To minimize any systematic
correlation between the timing of the interrupts and the code being run, we
randomize the length of the sampling period by writing a pseudorandom
value [Carta 1990] into the performance counter at the end of each
interrupt. The default sampling period is distributed uniformly between
60K and 64K when monitoring CYCLES.

4.1.2 Attributing Events to PCs. To accurately interpret samples, it is
important to understand the PC delivered to the interrupt handler. On the
21164, a performance counter interrupt is delivered to the processor exactly
six cycles after the counter overflows. When the interrupt is delivered, the
handler is invoked with the PC of the oldest instruction that was in the
issue queue at the time of interrupt delivery. The delayed delivery does not
skew the distribution of cycle counter overflows; it just shifts the sampling
period by six cycles. The number of cycle counter samples associated with
each instruction is still statistically proportional to the total time spent by
that instruction at the head of the issue queue. Since instructions stall only

5We monitor CYCLES to obtain the information needed to estimate instruction frequency and
cpi; see Section 6 for details. We also monitor IMISS because IMISS samples are usually
accurate, so they provide important additional information for understanding the causes of
stalls; see the discussion in Section 4.1.2.

Continuous Profiling • 367

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

at the head of the issue queue on the 21064 and 21164, this accounts for all
occurrences of stalls.

Events that incur more than six cycles of latency can mask the interrupt
latency. For example, instruction cache misses usually take long enough
that the interrupt is delivered to the processor before the instruction that
incurred the IMISS has issued. Thus, the sampled PC for an IMISS event is
usually (though not always) correctly attributed to the instruction that
caused the miss.

For other events, the six-cycle interrupt latency can cause significant
problems. The samples associated with events caused by a given instruc-
tion can show up on instructions a few cycles later in the instruction
stream, depending on the latency of the specific event type. Since a
dynamically varying number of instructions, including branches, can occur
during this interval, useful information may be lost. In general, samples for
events other than CYCLES and IMISS are helpful in tracking down
performance problems, but less useful for detailed analysis.

4.1.3 Blind Spots: Deferred Interrupts. Performance counter inter-
rupts execute at the highest kernel priority level (spldevrt), but are
deferred while running noninterruptible PALcode [Sites and Witek 1995] or
system code at the highest priority level.6 Events in PALcode and high-
priority interrupt code are still counted, but samples for those events will
be associated with the instruction that runs after the PALcode finishes or
after the interrupt level drops below spldevrt.

For synchronous PAL calls, the samples attributed to the instruction
following the call provide useful information about the time spent in the
call. The primary asynchronous PAL call is “deliver interrupt,” which
dispatches to a particular kernel entry point; the samples for “deliver
interrupt” accumulate at that entry point. The other samples for high-
priority asynchronous PAL calls and interrupts are both relatively infre-
quent and usually spread throughout the running workload, so they simply
add a small amount of noise to the statistical sampling.

4.2 Device Driver

Our device driver efficiently handles interrupts generated by Alpha perfor-
mance counter overflows and provides an ioctl interface that allows
user-mode programs to flush samples from kernel buffers to user space.

The interrupt rate is high: approximately 5200 interrupts per second on
each processor when monitoring CYCLES on an Alpha 21164 running at
333MHz, and higher with simultaneous monitoring of additional events.
This raises two problems. First, the interrupt handler has to be fast; for
example, if the interrupt handler takes 1000 cycles, it will consume more
than 1.5% of the CPU. Note that a cache miss all the way to memory costs

6This makes profiling the performance counter interrupt handler difficult. We have imple-
mented a “metamethod” for obtaining samples within the interrupt handler itself, but space
limitations preclude a more detailed discussion.

368 • Jennifer M. Anderson et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

on the order of 100 cycles; thus, we can afford to execute lots of instructions
but not to take many cache misses. Second, the samples generate signifi-
cant memory traffic. Simply storing the raw data (16-bit PID, 64-bit PC,
and 2-bit EVENT) for each interrupt in a buffer would generate more than
52KB per processor per second. This data will be copied to a user-level
process for further processing and merging into on-disk profiles, imposing
unacceptable overhead.

We could reduce these problems by resorting to lower-frequency event
sampling, but that would increase the amount of time required to collect
useful profiles. Instead, we engineered our data collection system to reduce
the overhead associated with processing each sample. First, we reduce the
number of samples that have to be copied to user space and processed by
the daemon by counting, in the device driver, the number of times a
particular sample has occurred recently. This typically reduces the data
rate of sample data moving from the device driver to the user-level daemon
by a factor of 20 or more. Second, we organize our data structures to
minimize cache misses. Third, we allocate per-processor data structures to
reduce both writes to shared cache lines and the synchronization required
for correct operation on a multiprocessor. Fourth, we switch dynamically
among specialized versions of the interrupt handler to reduce the time
spent checking various flags and run-time constants. The rest of this
section describes our optimizations in more detail.

4.2.1 Data Structures. Each processor maintains its own private set of
data structures. A processor’s data structures are primarily modified by the
interrupt routine running on that processor. However, they can also be
read and modified by the flush routines that copy data to user space.
Synchronization details for these interactions are discussed in Section
4.2.3.

Each processor maintains a hash table that is used to aggregate samples
by counting the number of times each (PID, PC, EVENT) triple has been
seen. This reduces the amount of data that must be passed from the device
driver to the user-level daemon by a factor of 20 or more for most
workloads, resulting in less memory traffic and lower processing overhead
per aggregated sample. The hash table is implemented with an array of
fixed-size buckets, where each bucket can store four entries (each entry
consists of a PID, PC, and EVENT, plus a count).

A pair of overflow buffers stores entries evicted from the hash table. Two
buffers are kept so entries can be appended to one while the other is copied
to user space. When an overflow buffer is full, the driver notifies the
daemon, which copies the buffer to user space.

The interrupt handler hashes the PID, PC, and EVENT to obtain a
bucket index i; it then checks all entries at index i. If one matches the
sample, its count is incremented. Otherwise one entry is evicted to an
overflow buffer and is replaced by the new sample with a count of one. The
evicted entry is chosen using a mod-4 counter that is incremented on each
eviction. Each entry occupies 16 bytes; therefore, a bucket occupies one

Continuous Profiling • 369

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

cache line (64 bytes) on an Alpha 21164, so we incur at most one data cache
miss to search the entire bucket.

The four-way associativity of the hash table helps to prevent thrashing of
entries due to hashing collisions. In Section 5 we discuss experiments
conducted to evaluate how much greater associativity might help.

4.2.2 Reducing Cache Misses. A cache miss all the way out to memory
costs on the order of 100 cycles. Indeed, it turns out that cache misses, for
both instructions and data, are one of the dominant sources of overhead in
the interrupt handler; we could execute many more instructions without a
significant impact on overhead as long as they did not result in cache
misses.

To reduce overhead, we designed our system to minimize the number of
cache misses. In the common case of a hash table hit, the interrupt handler
accesses one bucket of the hash table, various private per-processor state
variables (such as a pointer to the local hash table, the seed used for period
randomization, etc.), and global state variables (such as the size of the hash
table, the set of monitored events, and the sampling period).

On the 21164, the hash table search generates at most one cache miss.
Additionally, we pack the private state variables and read-only copies of
the global variables into a 64-byte-per-processor data structure, so at most
one cache miss is needed for them. By making copies of all shared state, we
also avoid interprocessor cache line thrashing and invalidations.

In the uncommon case of a hash table miss, we evict an old entry from
the hash table. This eviction accesses one extra cache line for the empty
overflow buffer entry into which the evicted entry is written. Some per-
processor and global variables are also accessed, but these are all packed
into the 64-byte-per-processor structure described above. Therefore these
accesses do not generate any more cache misses.

4.2.3 Reducing Synchronization. Synchronization is eliminated be-
tween interrupt handlers on different processors in a multiprocessor and is
minimized between the handlers and other driver routines. Synchroniza-
tion operations (in particular, memory barriers [Sites and Witek 1995]) are
expensive, costing on the order of 100 cycles, so even a small number of
them in the interrupt handler would result in unacceptable overhead. The
data structures used by the driver and the techniques used to synchronize
access to them were designed to eliminate all expensive synchronization
operations from the interrupt handler.

We use a separate hash table and pair of overflow buffers per processor,
so handlers running on different processors never need to synchronize with
each other. Synchronization is only required between a handler and the
routines that copy the contents of the hash table and overflow buffers used
by that handler to user space. Each processor’s hash table is protected by a
flag that can be set only on that processor. Before a flush routine copies the
hash table for a processor, it performs an interprocessor interrupt (IPI) to
that processor to set the flag indicating that the hash table is being flushed.
The IPI handler raises its priority level to ensure that it executes atomi-

370 • Jennifer M. Anderson et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

cally with respect to the performance counter interrupts. If the hash table
is being flushed, the performance counter interrupt handler writes the
sample directly into the overflow buffer. Use of the overflow buffers is
synchronized similarly.

Although IPIs are expensive, they allow us to remove all memory
barriers from the interrupt handler, in exchange for increasing the cost of
the flush routines. Since the interrupt handler runs much more frequently
than the flush routines, this is a good tradeoff.

4.3 User-Mode Daemon

A user-mode daemon extracts samples from the driver and associates them
with their corresponding images. Users may also request separate, per-
process profiles for specified images. The data for each image are periodi-
cally merged into compact profiles stored as separate files on disk.

4.3.1 Sample Processing. The main daemon loop waits until the driver
signals a full overflow buffer; it then copies the buffer to user space and
processes each entry. The daemon maintains image maps for each active
process; it uses the PID and the PC of the entry to find the image loaded at
that PC in that process. The PC is converted to an image offset, and the
result is merged into a hash table associated with the relevant image and
EVENT. The daemon obtains its information about image mappings from a
variety of sources, as described in the following section.

Periodically, the daemon extracts all samples from the driver data
structures, updates disk-based profiles, and discards data structures asso-
ciated with terminated processes. The time intervals associated with peri-
odic processing are user-specified parameters; by default, the daemon
drains the driver every five minutes, and in-memory profile data are
merged to disk every 10 minutes. This simple timeout-based approach can
cause undesirable bursts of intense daemon activity; the next version of our
system will avoid this by updating disk profiles incrementally. A complete
flush can also be initiated by a user-level command.

4.3.2 Obtaining Image Mappings. We use several sources of informa-
tion to determine where images are loaded into each process. First, a
modified version of the dynamic system loader (/sbin/loader) notifies our
system’s daemon whenever an image is loaded into a process. The notifica-
tion contains the PID, a unique identifier for each loaded image, the
address at which it was loaded, and its file system path name. This
mechanism captures all dynamically loaded images.

Second, the kernel exec path invokes a chain of recognizer routines to
determine how to load an image. We register a special routine at the head
of this chain that captures information about all static images. The
recognizer stores this data in a kernel buffer that is flushed by the daemon
every few seconds.

Continuous Profiling • 371

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

Finally, to obtain image maps for processes already active when the
daemon starts, on startup the daemon scans all active processes and their
mapped regions using Mach-based system calls available in Digital Unix.

Together, these mechanisms are able to successfully classify virtually all
samples collected by the driver. Any remaining unknown samples are
aggregated into a special profile. In our experience, the number of unknown
samples is considerably smaller than 1%; a typical fraction from a week-
long run is 0.05%.

4.3.3 Profile Database. The daemon stores samples in an on-disk pro-
file database. This database resides in a user-specified directory and may
be shared by multiple machines over a network. Samples are organized into
nonoverlapping epochs, each of which contains all samples collected during
a given time interval. A new epoch can be initiated by a user-level
command. Each epoch occupies a separate subdirectory of the database. A
separate file is used to store the profile for a given image and EVENT
combination.

The profile files are written in a compact binary format. Since significant
fractions of most executable images consist of symbol tables and instruc-
tions that are never executed, profiles are typically smaller than their
associated executables by an order of magnitude, even after days of
continuous profiling. Although disk space usage has not been a problem, we
have also designed an improved format that can compress existing profiles
by approximately a factor of three.

5. PROFILING PERFORMANCE

Performance is critical to the success of a profiling system intended to run
continuously on production systems. The system must collect many thou-
sands of samples per second yet incur sufficiently low overhead that its
benefits outweigh its costs. In this section we summarize the results of
experiments designed to measure the performance of our system and to
explore tradeoffs in its design.

We evaluated our profiling system’s performance under three different
configurations: cycles, in which the system monitors only cycles; default, in
which the system monitors both cycles and instruction cache misses; and
mux, in which the system monitors cycles with one performance counter
and uses multiplexing to monitor instruction cache misses, data cache
misses, and branch mispredictions with another counter. Tables II and III
show the workloads used, their average running times (from a minimum of
10 runs, shown with 95% confidence intervals) in the base configuration
without our system, and the machines on which they ran.

5.1 Aggregate Time Overhead

To measure the overhead, we ran each workload a minimum of 10 times in
each configuration, and ran many workloads as many as 50 times. Tables
IV and V show the percentage overhead (with 95% confidence intervals)
imposed by the three different configurations of our system compared to the

372 • Jennifer M. Anderson et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

base configuration. (The timesharing workload is not included in the table;
since it was measured on a live system, we cannot run it in each configura-
tion to determine overall slowdown.) McCalpin and x11perf report their
results as rates (MB/sec for McCalpin, and operations/sec for x11perf); for
these, Table IV shows the degradation of the rates. For the other work-

Table II. Description of Uniprocessor Workloads

Workload
Mean base

Runtime (secs.) Platform Description

SPECint95
SPECfp95

13226 6 258
17238 6 106

333MHz
AlphaStation 500

The SPEC benchmark suite
compiled using both the
BASE and PEAK
compilation flags and run
with the runspec driver.*

x11perf N /A 333MHz
AlphaStation 500

Several tests from the x11perf
X server performance-
testing program. The tests
chosen are representative of
CPU-bound tests.**

McCalpin N /A 333MHz
AlphaStation 500

The McCalpin STREAMS
benchmark, consisting of
four loops that measure
memory system bandwidth
[McCalpin 1995].

*http://www.specbench.org/osg/spec95/
**http//www.specbench.org/gpc/xpc.static/index.html

Table III. Description of Multiprocessor Workloads

Workload
Mean base

Runtime (secs.) Platform Description

AltaVista 319 6 2 300MHz 4-CPU
ALPHASERVER 4100

A trace of 28,622 queries made
to the 3.5GB AltaVista news
index. The system was
driven so as to maintain
eight outstanding queries.

DSS 2786 6 35 300MHz 8-CPU
ALPHASERVER 8400

A decision support system
(DSS) query based on the
TPC-D specification.*

par
SPECfp

2777 6 168 300MHz 4-CPU
ALPHASERVER 4100

The SPECfp95 programs,
parallelized by the Stanford
SUIF compiler [Hall et al.
1996].

timesharing 7 days 300MHz 4-CPU
ALPHASERVER 4100

A timeshared server used for
office and technical
applications, running the
default configuration of our
system. We used this
workload to gather statistics
for a long-running profile
session.

*http://www.tpc.org/bench.descrip.html

Continuous Profiling • 373

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

loads, Tables IV and V show the increase in running time. The numbers in
both tables show that the overall overhead imposed by our system is quite
low, usually 1 to 3%. The variation in performance from run to run of each
workload is typically much greater than our system’s overhead.

Figure 6 shows the data in more detail for three programs: AltaVista; the
gcc portion of the SPECint95 workload (peak version); and the wave5
portion of the SPECfp95 workload (peak version). Each graph gives a
scatter plot of the running times in seconds for all four configurations. The
range of the y-axis is from 90% to 135% of the mean value, with the x-axis
intersecting at the mean value; 95%-confidence intervals are also shown.

AltaVista is representative of the majority of the workloads that we
studied: the profiling overhead is small, and there is little variance across
the different runs. In contrast, our system incurs relatively high overhead
on gcc (about 4% to 10%). This benchmark compiles 56 preprocessed source
files into assembly files; each file requires a separate invocation of the
program and thus has a distinct PID. Since samples with distinct PIDs do
not match in the hash table, the eviction rate is high, resulting in higher
overhead (see Section 5.2). Finally, the wave5 data shows an apparent
speedup from running DCPI in our experiments. In this and similar cases,
the running time variance exceeded our profiling overhead.

The overheads we measured are likely to be slightly higher than would
be experienced in practice, since as discussed in the next section, all
measurements were done using an instrumented version of the system that
logged additional statistics, imposing overhead that would not normally be
incurred.

Table IV. Overall Slowdown for Uniprocessor Workloads (in percent)

Workload Cycles Default Mux

SPECint95 2.0 6 0.8 2.8 6 0.9 3.0 6 0.7
SPECfp95 0.6 6 1.0 0.5 6 1.1 1.1 6 1.1
x11perf

noop 1.6 6 0.5 1.9 6 0.5 2.2 6 0.5
circle10 2.8 6 0.6 2.4 6 0.4 2.4 6 0.4
ellipse10 1.5 6 0.2 1.8 6 0.2 2.3 6 0.4
64poly10 1.1 6 0.4 2.0 6 0.5 2.4 6 0.6
ucreate 2.7 6 0.7 4.2 6 0.7 5.0 6 0.7

McCalpin
assign 0.9 6 0.1 0.9 6 0.1 1.1 6 0.1
saxpy 1.0 6 0.1 1.1 6 0.1 1.3 6 0.1
scale 1.1 6 0.1 1.1 6 0.1 1.2 6 0.1
sum 1.1 6 0.1 1.1 6 0.1 1.2 6 0.1

Table V. Overall Slowdown for Multiprocessor Workloads (in percent)

Workload Cycles Default Mux

AltaVista 0.5 6 0.8 1.3 6 1.8 1.6 6 0.5
DSS 1.2 6 1.1 1.8 6 2.6 0.6 6 0.3
par SPECfp 6.0 6 3.5 3.1 6 1.8 7.5 6 4.6

374 • Jennifer M. Anderson et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

5.2 Components of Time Overhead

There are two main components to our system’s overhead. First is the time
to service performance counter interrupts. Second is the time to read
samples from the device driver into the daemon and merge the samples into
the on-disk profiles for the appropriate images. To investigate the cost of
these two components, we performed all the experiments with our system
instrumented to collect several statistics: (1) the number of cycles spent in
our interrupt handler, collected separately for the cases when samples hit
or miss in the hash table; (2) the eviction rate from the hash table; and (3)
the total number of samples observed. For real workloads, we are able to
directly measure only the time spent in our interrupt handler, which does
not include the time to deliver the interrupt nor the time to return from the
interrupt handler. Experimentation with a tight spin loop revealed the
best-case interrupt setup and teardown time to be around 214 cycles (not
including our interrupt handler itself). Under real workloads, this value is
likely to increase due to additional instruction cache misses.

To evaluate the daemon’s per-sample cost of processing, all experiments
were configured to gather per-process samples for the daemon itself; this

Fig. 6. Distribution of running times.

Continuous Profiling • 375

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

showed how many cycles were spent both in the daemon and in the kernel
on behalf of the daemon. Dividing this by the total number of samples
processed by the driver gives the per-sample processing time in the
daemon.7

These statistics are summarized for each workload in Table VI for each of
the three configurations. We also separately measured the statistics for the
gcc program in the SPECint95 workload to show the effects of a high
eviction rate. The table shows that workloads with low eviction rates, such
as SPECfp95 and AltaVista, not only spend less time processing each
interrupt (because a hit in the hash table is faster than a miss), but also
spend less time processing each sample in the daemon because many
samples are aggregated into a single entry before being evicted from the
hash table. The average interrupt cost can be computed as a weighted
average of the hit and miss interrupt costs shown in the table, weighted by
the miss rate. For workloads with a high eviction rate, the average
interrupt cost is higher; in addition, the higher eviction rate leads to more
overflow entries and a higher per-sample cost in the daemon.

5.3 Aggregate Space Overhead

This section evaluates the memory and disk overheads of the system.
Memory is consumed by both the device driver and the daemon, while disk
space is used to store nonvolatile profile data.

As described in Section 4, the device driver maintains a hash table and a
pair of overflow buffers for each processor in nonpageable kernel memory.
In all of our experiments, each overflow buffer held 8K samples, and each

7The per-sample metric is used to allow comparison with the per-sample time in the interrupt
handler and is different from the time spent processing each entry from the overflow buffer
(since multiple samples are “processed” for entries with counts higher than 1).

Table VI. Time Overhead Components

Workload

Cycles Default Mux

Miss
Rate

Per Sample Cost
(cycles)

Miss
Rate

Per Sample Cost
(cycles)

Miss
Rate

Per Sample Cost
(cycles)

Intr
Cost

Hit/Miss
Daemon

Cost

Intr
Cost

Hit/Miss
Daemon

Cost

Intr
Cost

Hit/Miss
Daemon

Cost

SPECint95 6.7% 416/700 175 9.5% 430/654 245 9.5% 554/842 272
gcc 38.1% 450/716 781 44.5% 455/669 927 44.2% 558/804 982
SPECfp95 0.6% 483/924 59 1.4% 433/752 95 1.5% 539/833 107
x11perf 2.1% 454/915 178 5.6% 436/763 266 5.5% 550/868 289
McCalpin 0.7% 384/1033 51 1.4% 384/916 70 1.1% 506/1143 72
AltaVista 0.5% 340/748 21 1.7% 344/661 56 1.6% 382/733 47
DSS 0.5% 227/755 41 0.9% 216/660 49 0.9% 273/815 60
par SPECfp 0.3% 354/847 29 0.7% 352/713 47 0.9% 440/854 58
timesharing not measured 0.7% 199/628 66 not measured

376 • Jennifer M. Anderson et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

hash table held 16K samples, for a total of 512KB of kernel memory per
processor.

The daemon consumes ordinary pageable memory. It allocates a buffer
large enough to flush one overflow buffer or hash table per processor, as
well as data structures for every active process and image. Memory usage
grows with the number of active processes and depends upon workload
locality. Per-process data structures are reaped infrequently (by default,
every five minutes), and samples for each image are buffered until saved to
disk (by default, every 10 minutes); as a result, the daemon’s worst-case
memory consumption occurs when the profiled workload consists of many
short-lived processes or processes with poor locality.

Table VII presents the average and peak resident memory (both text and
data) used by the daemon for each workload. It also shows the length of
time the daemon was up for running that particular workload in the
default configuration. For most workloads, memory usage is modest. The
week-long timesharing workload, running on a four-processor compute
server with hundreds of active processes, required the most memory
(14.2MB). However, since this multiprocessor has 4GB of physical memory,
the overall fraction of memory devoted to our profiling system is less than
0.5%.

On workstations with smaller configurations (64MB to 128MB), the
memory overhead ranges from 5 to 10%. Since the current daemon imple-
mentation has not been carefully tuned, we expect substantial memory
savings from techniques such as reductions in the storage costs of hash
tables and more aggressive reaping of inactive structures.

Finally, as shown in Table VII, the disk space consumed by profile
databases is small. Most sets of profiles required only a few megabytes of
storage. Even the week-long timesharing workload, which stored both
CYCLES and IMISS profiles for over 480 distinct executable images, used
just 13MB of disk space.

Table VII. Daemon Space Overhead

Workload

Cycles Default Mux

Space (MB)

Uptime
(hh:mm)

Space (MB) Space (MB)

Memory
Avg. (peak)

Disk
Usage

Memory
Avg. (peak)

Disk
Usage

Memory
Avg. (peak)

Disk
Usage

SPECint95 6.6 (8.7) 2.6 15:01 8.3 (13.5) 4.8 8.8 (11.3) 6.3
gcc 8.9 (11.3) 1.8 5:42 9.3 (9.9) 3.2 11.5 (12.0) 4.2
SPECfp95 2.4 (3.3) 1.4 19:14 2.7 (3.8) 2.6 3.0 (3.8) 3.2
x11perf 1.6 (1.8) 0.2 0:21 1.8 (1.9) 0.4 2.0 (2.1) 0.4
McCalpin 1.6 (2.0) 0.1 0:09 1.7 (2.2) 0.2 1.8 (2.3) 0.2
AltaVista 2.6 (3.0) 0.3 0:27 2.9 (3.3) 0.5 3.2 (3.6) 0.6
DSS 4.4 (5.5) 0.6 3:56 5.1 (5.3) 1.1 5.1 (5.2) 1.4
par SPECfp 2.9 (3.3) 1.2 7:57 3.4 (3.6) 2.0 3.7 (4.0) 2.6
timesharing not measured 187:44 10.9 (14.2) 12.6 not measured

Continuous Profiling • 377

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

5.4 Potential Performance Improvements

While the driver has been carefully engineered for performance, there is
still room for improvement. In addition, the performance of the daemon can
probably be improved substantially.

As shown in Section 5.2, the performance of our system is heavily
dependent on the effectiveness of the hash table in aggregating samples. To
explore alternative designs, we constructed a trace-driven simulator that
models the driver’s hash table structures. Using sample traces logged by a
special version of the driver, we examined varying associativity, replace-
ment policy, overall table size, and hash function.

Our experiments indicate that (1) increasing associativity from four-way
to six-way, by packing more entries per processor cache line (which would
also increase the total number of entries in the hash table) and (2) using
swap-to-front on hash table hits and inserting new entries at the beginning
of the line, rather than the round-robin policy we currently use, would
reduce the overall system cost by 10–20%. We intend to incorporate both of
these changes in a future version of our system.

Unlike the driver, the user-mode daemon has not been heavily optimized.
A few key changes should reduce the time to process each raw driver
sample significantly. One costly activity in the daemon involves associating
a sample with its corresponding image; this currently requires three hash
lookups. Sorting each buffer of raw samples by PID and PC could amortize
these lookups over a large number of samples. Memory copy costs could
also be reduced by mapping kernel sample buffers directly into the dae-
mon’s address space. We estimate that these and other changes could cut
the overhead due to the daemon by about a factor of 2.

6. DATA ANALYSIS OVERVIEW

The CYCLES samples recorded by the data collection subsystem tell us
approximately how much total time was spent by each instruction at the
head of the issue queue. However, when we see a large sample count for an
instruction, we do not know immediately from the sample counts whether
the instruction was simply executed many times or whether it stalled most
of the times it was executed. In addition, if the instruction did stall, we do
not know why. The data analysis subsystem fills in these missing pieces of
information. Note that the analysis is done offline, after samples have been
collected.

Given profile data, the analysis subsystem produces for each instruction

—a frequency, which is proportional to the number of times the instruction
was executed during the profiled period,

—a cpi, which is an estimate of the average number of cycles spent by that
instruction at the head of the issue queue for each execution during the
profiled period, and

—a set of culprits, which are possible explanations for any wasted issue
slots (due to static or dynamic stalls).

378 • Jennifer M. Anderson et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

The analysis is done in two phases; the first phase estimates the
frequency and cpi for each instruction, and the second phase identifies
culprits for each stall. The analysis is designed for processors that execute
instructions in order; we are working on extending it to out-of-order
processors.

For programs whose executions are deterministic, it is possible to mea-
sure the execution counts by instrumenting the code directly (e.g., using
pixie). In this case, the first phase of the analysis, which estimates the
frequency, is not necessary. However, many large systems (e.g., databases)
are not deterministic; even for deterministic programs, the ability to derive
frequency estimates from sample counts eliminates the need to create and
run an instrumented version of the program, simplifying the job of collect-
ing profile information.

6.1 Estimating Frequency and CPI

The crux of the problem in estimating instruction frequency and cpi is that
the sample data provides information about the total time spent by each
instruction at the head of the issue queue, which is proportional to the
product of its frequency and its cpi; we need to factor that product. For
example, if the instruction’s sample count is 1000, its frequency could be
1000 and its cpi 1, or its frequency could be 10 and its cpi 100; we cannot
tell given only its sample count. However, by combining information from
several instructions, we can often do an excellent job of factoring the total
time spent by an instruction into its component factors.

The bulk of the estimation process is focused on estimating the fre-
quency, Fi, of each instruction i. Fi is simply the number of times the
instruction was executed divided by the average sampling period, P, used to
gather the samples. The sample count Si should be approximately FiCi,
where Ci is the average number of cycles instruction i spends at the head of
the issue queue. Our analysis first finds Fi; Ci is then easily obtained by
division.

The analysis estimates the Fi values by examining one procedure at a
time. The following steps are performed for each procedure:

(1) Build a control flow graph (CFG) for the procedure.
(2) Group the basic blocks and edges of the CFG into equivalence classes

based on frequency of execution.
(3) Estimate the frequency of each equivalence class that contains instruc-

tions with suitable sample counts.
(4) Use a linear-time local propagation method based on flow constraints in

the procedure’s CFG to propagate frequency estimates around the CFG.
(5) Use a heuristic to predict the accuracy of the estimates.

Some details are given below.

6.1.1 Building a CFG. The CFG is built by extracting the code for a
procedure from the executable image. Basic-block boundaries are identified

Continuous Profiling • 379

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

from instructions that change control flow, e.g., branches and jumps. For
indirect jumps, we analyze the preceding instructions to try to determine
the possible targets of the jump. Sometimes this analysis fails, in which
case the CFG is noted as missing edges. The current analysis does not
identify interprocedural edges (e.g., from calls to longjmp), nor does it note
their absence.

6.1.2 Determining Frequency Equivalence. If the CFG is noted as
missing edges, each block and each edge is assigned its own equivalence
class. Otherwise, we use an extended version of the cycle equivalence
algorithm in Johnson et al. [1994] to identify sets of blocks and edges that
are guaranteed to be executed the same number of times. Each such set
constitutes one equivalence class. Our extension to the algorithm is for
handling CFG’s with infinite loops, e.g., the idle loop of an operating
system.

6.1.3 Estimating Frequency from Sample Counts. The heuristic for
estimating the frequency of an equivalence class of instructions works on
one class at a time. All instructions in a class have the same frequency,
henceforth called F.

The heuristic is based on two assumptions: first, that at least some
instructions in the class encounter no dynamic stalls, and second, that one
can statically compute, for most instructions, the minimum number of
cycles Mi that instruction i spends at the head of the issue queue in the
absence of dynamic stalls.

Mi is obtained by scheduling each basic block using a model of the
processor on which it was run. Mi may be 0. In practice, Mi is 0 for all but
the first of a group of multiissued instructions. An issue point is an
instruction with Mi . 0.

If issue point i has no dynamic stalls, the frequency F should be, modulo
sampling error, Si/Mi. If the issue point incurs dynamic stalls, Si will
increase. Thus, we can estimate F by averaging some of the smaller ratios
Si/Mi of the issue points in the class.

As an example, Figure 7 illustrates the analysis for the copy loop shown

Fig. 7. Estimating frequency of copy loop.

380 • Jennifer M. Anderson et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

previously in Figure 2. The Mi column shows the output from the instruc-
tion scheduler, and the Si/Mi column shows the ratio for each issue point.
The heuristic used various rules to choose the ratios marked with p to be
averaged, computing a frequency of 1527. This is close to 1575.1, the true
frequency for this example.

There are several challenges in making accurate estimates. First, an
equivalence class might have few issue points. In general, the smaller the
number of issue points, the greater the chance that all of them encounter
some dynamic stall. In this case, the heuristic will overestimate F. At the
extreme, a class might have no issue points, e.g., because it contains no
basic blocks. In this case, the best we can do is exploit flow constraints of
the CFG to compute a frequency in the propagation phase.

Second, an equivalence class might have only a small number of samples.
In this case, we estimate F as (iSi/(iMi, where i ranges over the instruc-
tions in the class. This increases the number of samples used by our
heuristic and generally improves the estimate.

Third, Mi may not be statically determinable. For example, the number of
cycles an instruction spends at the head of the issue queue may in general
depend on the code executed before the basic block. When a block has
multiple predecessors, there is no one static code schedule for computing
Mi. In this case, we currently ignore all preceding blocks. For the block
listed in Figure 7, this limitation leads to an error: Mi for the ldq
instruction at 009810 should be 2 instead of 1 because the processor cannot
issue an ldq two cycles after the stq at 009838 from the previous iteration.
Thus, a static stall was misclassified as a dynamic stall, and the issue point
was ignored.

Fourth, dynamic stalls sometimes make the Mi values inaccurate. Sup-
pose an issue point instruction i depends on a preceding instruction j,
either because i uses the result of j or because i needs to use some
hardware resource also used by j. Thus, Mi is a function of the latency of j.
If an instruction between j and i incurs a dynamic stall, this will cause i to
spend fewer than Mi cycles at the head of the issue queue because the
latency of j overlaps the dynamic stall. To address this problem, we use the
ratio (k5j11

i Sk/(k5j11
i Mk for the issue point i when there are instructions

between j and i. This estimate is more reliable than Si/Mi because the
dependence of i on j ensures that the statically determined latency between
them will not be decreased by dynamic stalls of j or intervening instruc-
tions.

Finally, one must select which of the ratios to include in the average. In
rough terms, we examine clusters of issue points that have relatively small
ratios, where a cluster is a set of issue points that have similar ratios (e.g.,
maximum ratio in cluster #1.5 p minimum ratio in cluster). However, to
reduce the chance of underestimating F, the cluster is discarded if its issue
points appear to have anomalous values for Si or Mi, e.g., because the
cluster contains less than a minimum fraction of the issue points in the
class or because the estimate for F would imply an unreasonably large stall
for another instruction in the class.

Continuous Profiling • 381

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

6.1.4 Local Propagation. Local propagation exploits flow constraints of
the CFG to make additional estimates. Except for the boundary case where
a block has no predecessors (or successors), the frequency of a block should
be equal to the sum of the frequencies of its incoming (or outgoing) edges.

The flow constraints have the same form as dataflow equations, so for
this analysis we use a variant of the standard, iterative algorithm used in
compilers. The variations are (1) whenever a new estimate is made for a
block or an edge, the estimate is immediately propagated to all of the other
members in the block or edge’s equivalence class, and (2) no negative
estimates are allowed. (The flow equations can produce negative values
because the frequency values are only estimates.) Because of the nature of
the flow constraints, the time required for local propagation is linear in the
size of the CFG.

We are currently experimenting with a global constraint solver to adjust
the frequency estimates where they violate the flow constraints.

6.1.5 Predicting Accuracy of Estimates. The analysis uses a second
heuristic to predict the accuracy of each frequency estimate as being low,
medium, or high confidence. The confidence of an estimate is a function of
the number of issue points used to compute the estimate, how tightly the
ratios of the issue points were clustered, whether the estimate was made by
propagation, and the magnitude of the estimate.

6.2 Evaluating the Frequency Estimation Process

A natural question at this point is to ask how well the frequency estimates
produced by our tools match the actual frequencies. To evaluate the
accuracy of the estimates, we ran a suite of programs twice: once using the
profiling tools and once using dcpix, a pixie-like tool that instruments both
basic blocks and edges at branch points to obtain execution counts. We then
compared the estimated execution counts F P, where F is the frequency
estimate and P the sampling period, to the measured execution counts; the
values should be approximately equal (modulo sampling error) for pro-
grams whose execution is deterministic.

For this experiment, we used a subset of the SPEC95 suite. The subset
contains the “base” versions of all floating-point benchmarks and the
“peak” versions of all integer benchmarks except ijpeg. The other ex-
ecutables lacked the relocation symbols required by dcpix, and the instru-
mented version of ijpeg did not work. The profiles were generated by
running each program on its SPEC95 workload three times.

Figure 8 is a histogram showing the results for instruction frequencies.
The x-axis is a series of sample buckets. Each bucket covers a range of
errors in the estimate, e.g., the 215% bucket contains the samples of
instructions where F P was between 0.85 and 0.90 times the execution
count. The y-axis is the percentage of all CYCLES samples.

As the figure shows, 73% of the samples have estimates that are within
5% of the actual execution counts; 87% of the samples are within 10%; 92%

382 • Jennifer M. Anderson et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

are within 15%. Furthermore, nearly all samples whose estimates are off by
more than 15% are marked low confidence.

Figure 9 is a measure of the accuracy of the frequency estimates of edges.
Edges never get samples, so here the y-axis is the percentage of all edge
executions as measured by dcpix. As one might expect, the edge frequency
estimates, which are made indirectly using flow constraints, are not as
accurate as the block frequency estimates. Still, 58% of the edge executions
have estimates within 10%.

To gauge how the accuracy of the estimates is affected by the number of
CYCLES samples gathered, we compared the estimates obtained from a
profile for a single run of the integer workloads with those obtained from 80
runs. For the integer workloads as a whole, results in the two cases are
similar, although the estimates based on 80 runs are somewhat more
tightly clustered near the 25% bucket (e.g., for a single run, 54% of the
samples have estimates within 5% of the actual execution counts; for 80
runs, this increases to 70%). However, for the individual programs such as
gcc on which our analysis does less well using data from a small number of
runs, the estimates based on 80 runs are significantly better. With a single
run of the gcc workload, only 23% of the samples are within 5%; with 80
runs, this increases to 53%.

Even using data from 80 runs, however, the .45% bucket does not get
much smaller for gcc: it decreases from 21% to 17%. We suspect that the
samples in this bucket come from frequency equivalence classes with only
one or two issue points where dynamic stalls occur regularly. In this case,
gathering more CYCLES samples does not improve the analysis.

The analysis for estimating frequencies and identifying culprits is rela-
tively quick. It takes approximately three minutes to analyze the suite of
17 programs, which total roughly 26MB of executables. Roughly 20% of the
time was spent blocked for I/O.

Fig. 8. Distribution of errors in instruction frequencies (weighted by CYCLES samples).

Continuous Profiling • 383

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

6.3 Identifying Culprits

Identifying which instructions stalled and for how long reveals where the
performance bottlenecks are, but users (and, eventually, automatic opti-
mizers) must also know why the stalls occurred in order to solve the
problems. In this section, we outline the information our tools offer, how to
compute it, and how accurate the analysis is.

Our tools provide information at two levels: instruction and procedure. At
the instruction level, we annotate each stall with culprits (i.e., possible
explanations) and, if applicable, previous instructions that may have
caused the stall. Culprits are displayed as labeled bubbles between instruc-
tions as previously shown in Figure 2. For example, the analysis may
indicate that an instruction stalled because of a D-cache miss and point to
the load instruction fetching the operand that the stalled instruction needs.
At the procedure level, we summarize the cycles spent in the procedure,
showing how many have gone to I-cache misses, how many to D-cache
misses, etc., by aggregating instruction-level data. A sample summary is
shown earlier in Figure 4. With these summaries, users can quickly
identify and focus their effort on the more important performance issues in
any given procedure.

For each stall, we list all possible reasons rather than a single culprit
because reporting only one culprit would often be misleading. A stall shown
on the analysis output is the average of numerous stalls that occurred
during profiling. An instruction may stall for different reasons on different
occasions or even for multiple reasons on the same occasion. For example,
an instruction at the beginning of a basic block may stall for a branch
misprediction at one time and an I-cache miss at another, while D-cache
misses and write-buffer overflow may also contribute to the stall if that
instruction stores a register previously loaded from memory.

To identify culprits for stalls, we make use of a variety of information.
Specifically, we need only the binary executable and sample counts for

Fig. 9. Distribution of errors in edge frequencies (weighted by edge executions).

384 • Jennifer M. Anderson et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

CYCLES events. Sample counts for other types of events are taken into
consideration if available, but they are optional. Source code is not re-
quired. Neither is symbol table information, although the availability of
procedure names would make it easier for users to correlate the results
with the source code.

Our analysis considers both static and dynamic causes of stalls. For
static causes, we schedule instructions in each basic block using an
accurate model of the processor issue logic and assuming no dynamic stalls.
Detailed record keeping provides how long each instruction stalls due to
static constraints, why it stalls, and which previously issued instructions
may cause it to stall. These explain the static stalls. Additional stall cycles
observed in the profile data are treated as dynamic stalls.

To explain a dynamic stall at an instruction, we follow a “guilty until
proven innocent” approach. Specifically, we start from a list of all possible
reasons for dynamic stalls in general and try to rule out those that are
impossible or extremely unlikely in the specific case in question. Even if a
candidate cannot be eliminated, sometimes we can estimate an upper
bound on how much it can contribute to the stall. When uncertain, we
assume the candidate to be a culprit. In most cases, only one or two
candidates remain after elimination. If all have been ruled out, the stall is
marked as unexplained, which typically accounts for under 10% of the
samples in any given procedure (8.6% overall in the entire SPEC95 suite).
The candidates we currently consider are I-cache misses, D-cache misses,
instruction and data TLB misses, branch mispredictions, write-buffer over-
flows, and competition for function units, including the integer multiplier
and floating-point divider. Each is ruled out by a different technique. We
illustrate this for I-cache misses.

The key to ruling out I-cache misses is the observation that an instruc-
tion is extremely unlikely to stall due to an I-cache miss if it is in the same
cache line as every instruction that can execute immediately before it.8

More specifically, we examine the control flow graph and the addresses of
instructions. If a stalled instruction is not at the head of a basic block, it
can stall for an I-cache miss if and only if it lies at the beginning of a cache
line. If it is at the head of a basic block, however, we can determine from
the control flow graph which basic blocks may execute immediately before
it. If their last instructions are all in the same cache line as the stalled
instruction, an I-cache miss can be ruled out. For this analysis, we can
ignore basic blocks and control flow edges executed much less frequently
than the stalled instruction itself.

If IMISS event samples have been collected, we can use them to place an
upper bound on how many stall cycles can be attributed to I-cache misses.

8Even so, an I-cache miss is still possible in some scenarios: the stalled instruction is executed
immediately after an interrupt or software exception returns, or the preceding instruction
loads data that happen to displace the cache line containing the stalled instruction from a
unified cache. These scenarios are usually rare.

Continuous Profiling • 385

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

Given the IMISS count on each instruction and the sampling period, we
estimate how many I-cache misses occurred at any given instruction. From
this estimate and the execution frequency of the instruction, we then
compute the upper bound on stall cycles by assuming pessimistically that
each I-cache miss incurred a cache fill all the way from memory.

How accurate is the analysis? Since in any nontrivial program there is
often no way, short of detailed simulation, to ascertain why individual
instructions stalled, we cannot validate our analysis directly by comparing
its results with some “correct” answer. Instead, we evaluate it indirectly by
comparing the number of stall cycles it attributes to a given cause with the
corresponding sample count from event sampling, which serves as an
alternative measure of the performance impact of the same cause. Though
not a direct quantitative metric of accuracy, a strong correlation would
suggest that we are usefully identifying culprits. (Since events can have
vastly different costs, even exact event counts may not produce numbers of
stall cycles accurate enough for a direct comparison. For example, an
I-cache miss can cost from a few to a hundred cycles, depending on which
level of the memory hierarchy actually has the instruction.) Again, we
illustrate this validation approach with I-cache misses.

Figure 10 plots I-cache miss stall cycles against IMISS events for the
procedures accounting for 99.9% of the execution time of each benchmark
in the SPEC95 suite, with part of the main graph magnified for clarity.
Each of the 1310 procedures corresponds to a vertical bar. The x-axis is the
projected number of I-cache misses in that procedure, calculated by scaling
the IMISS counts by the sampling period. The y-axis is the number of stall

Fig. 10. Correlation between numbers of I-cache miss stall cycles and of IMISS events for
procedures in the SPEC95 benchmark suite.

386 • Jennifer M. Anderson et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

cycles attributed to I-cache misses by our tools, which report a range
because some stall cycles may be caused only in part by I-cache misses.9

Figure 10 shows that the stall cycles generally increase with the IMISS
counts, with each set of endpoints clustering around a straight line except
for a few outlier pairs. In more quantitative terms, the correlation coeffi-
cients between the IMISS count of each procedure and the top, bottom, and
midpoint of the corresponding range of stall cycles are 0.91, 0.86, and 0.90
respectively, all suggesting a strong (linear) correlation. We would expect
some points to deviate substantially from the majority because the cost of a
cache miss can vary widely and because our analysis is heuristic. For
example, Figure 10 has two conspicuous outliers near (0.05,3) and (1.8,4).
In the first case, the number of stall cycles is unusually large because of an
overly pessimistic assumption concerning a single stall in the compress
benchmark of SPECint95. In the second case, the number is smaller than
expected because the procedure (twldrv in fpppp of SPECfp95) contains
long basic blocks, which make instruction prefetching especially effective,
thus reducing the penalty incurred by the relatively large number of cache
misses.

7. FUTURE DIRECTIONS

There are a number of interesting opportunities for future research. We
plan to focus primarily on new profile-driven optimizations that can exploit
the fine-grained information supplied by our analysis tools. Work is already
under way to drive existing compile-time, link-time, and binary-rewriting
optimizations using profile data, and to integrate optimizers and our
profiling system into a single “continuous optimization” system that runs in
the background improving the performance of key programs.

We also plan to further optimize and extend our existing infrastructure.
We are currently investigating hardware and software mechanisms to
capture more information with each sample, such as referenced memory
addresses, register values, and branch directions. We have already proto-
typed two general software extensions: instruction interpretation and dou-
ble sampling.

Interpretation involves decoding the instruction associated with the
sampled PC and determining if useful information should be extracted and
recorded. For example, each conditional branch can be interpreted to
determine whether or not the branch will be taken, yielding “edge samples”
that should prove valuable for analysis and optimization. Double sampling
is an alternate technique that can be used to obtain edge samples. During
selected performance counter interrupts, a second interrupt is set up to
occur immediately after returning from the first, providing two PC values
along an execution path. Careful coding can ensure that the second PC is

9To isolate the effect of culprit analysis from that of frequency estimation in this experiment,
the analysis used execution counts measured with instrumented executables as described in
Section 6.2.

Continuous Profiling • 387

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

the very next one to be executed, directly providing edge samples; two or
more samples could also be used to form longer execution path profiles.

We are also developing a graphical user interface to improve usability, as
well as tools for interactively visualizing and exploring profile data. Fi-
nally, we are working with hardware designers to develop sampling sup-
port for the next generation of Alpha processors, which uses an out-of-order
execution model that presents a number of challenges.

8. CONCLUSIONS

The Digital Continuous Profiling Infrastructure transparently collects com-
plete, detailed profiles of entire systems. Its low overhead (typically 1–3%)
makes it practical for continuous profiling of production systems. A suite of
powerful profile analysis tools reveals useful performance metrics at vari-
ous levels of abstraction and identifies the possible reasons for all processor
stalls.

Our system demonstrates that it is possible to collect profile samples at a
high rate and with low overhead. High-rate sampling reduces the amount
of time a user must gather profiles before using analysis tools. This is
especially important when using tools that require samples at the granu-
larity of individual instructions rather than just basic blocks or procedures.
Low overhead is important because it reduces the amount of time required
to gather samples and improves the accuracy of the samples by minimizing
the perturbation of the profiled code.

To collect data at a high rate and with low overhead, performance
counter interrupt handling was carefully designed to minimize cache
misses and avoid costly synchronization. Each processor maintains a hash
table that aggregates samples associated with the same PID, PC, and
EVENT. Because of workload locality, this aggregation typically reduces
the cost of storing and processing each sample by an order of magnitude.
Samples are associated with executable images and stored in on-disk
profiles.

To describe performance at the instruction level, our analysis tools
introduce novel algorithms to address two issues: how long each instruction
stalls and the reasons for each stall. To determine stall latencies, an
average CPI is computed for each instruction, using estimated execution
frequencies. Accurate frequency estimates are recovered from profile data
by a set of heuristics that use a detailed model of the processor pipeline and
the constraints imposed by program control flow graphs to correlate sample
counts for different instructions. The processor pipeline model explains
static stalls; dynamic stalls are explained using a “guilty until proven
innocent” approach that reports each possible cause not eliminated through
careful analysis.

Dozens of users have already successfully used our system to optimize a
wide range of production software, including databases, compilers, graphics
accelerators, and operating systems. In many cases, detailed instruction-
level information was essential for pinpointing and fixing performance

388 • Jennifer M. Anderson et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

problems, and continuous profiling over long periods was necessary for
obtaining a representative profile.

ACKNOWLEDGMENTS

We would like to thank Mike Burrows, Allan Heydon, Hal Murray, Sharon
Perl, and Sharon Smith for helpful comments that greatly improved the
content and presentation of this article; the anonymous referees for SOSP
and TOCS also provided numerous helpful comments. We would also like to
thank Dawson Engler for initially suggesting the use of interprocessor
interrupts to avoid expensive synchronization operations in the interrupt
handler, Mitch Lichtenberg for his work on the Alpha/NT version of our
system and in general for his help and suggestions on the project, and the
developers of iprobe for supplying us with source code that helped us get off
the ground in building the early versions of our data collection system.
Finally, we would like to thank Gary Carleton and Bob Davies of Intel for
answering our questions about VTune and Marty Itzkowitz of SGI for
answering our questions about SpeedShop.

REFERENCES

ANDERSON, T. E. AND LAZOWSKA, E. D. 1990. Quartz: A tool for tuning parallel program
performance. In Proceedings of the ACM SIGMETRICS 1990 Conference on Measurement
and Modeling of Computer Systems. ACM, New York, 115–125.

BALL, T. AND LARUS, J. 1994. Optimally profiling and tracing programs. ACM Trans.
Program. Lang. Syst. 16, 4 (July), 1319–1360.

BLICKSTEIN, D., CRAIG, P., DAVIDSON, C., FAIMAN, R., GLOSSOP, K., GROVE, R., HOBBS, S., AND

NOYCE, W. 1992. The GEM optimizing compiler system. Digital Tech. J. 4, 4.
CARTA, D. 1990. Two fast implementations of the “minimal standard” random number

generator. Commun. ACM 33, 1 (Jan.), 87–88.
COHN, R. AND LOWNEY, P. G. 1996. Hot cold optimization of large Windows/NT applications.

In 29th Annual International Symposium on Microarchitecture (Micro-29) (Paris, France,
Dec.).

COHN, R., GOODWIN, D., LOWNEY, P. G., AND RUBIN, N. 1997. Spike: An optimizer for
Alpha/NT executables. In USENIX Windows NT Workshop. USENIX Assoc., Berkeley, Calif.

DIGITAL. 1995a. Alpha 21164 microprocessor hardware reference manual. Digital Equip-
ment Corp., Maynard, Mass.

DIGITAL. 1995b. DECchip 21064 and DECchip 21064A Alpha AXP microprocessors hard-
ware reference manual. Digital Equipment Corp., Maynard, Mass.

GOLDBERG, A. J. AND HENNESSY, J. L. 1993. MTOOL: An integrated system for performance
debugging shared memory multiprocessor applications. IEEE Trans. Parallel Distrib. Syst.
28–40.

GRAHAM, S., KESSLER, P., AND MCKUSICK, M. 1982. gprof: A call graph execution profiler.
SIGPLAN Not. 17, 6 (June), 120–126.

HALL, M., ANDERSON, J., AMARASINGHE, S., MURPHY, B., LIAO, S.-W., BUGNION, E., AND LAM, M.
1996. Maximizing multiprocessor performance with the SUIF compiler. IEEE Comput. 29,
12 (Dec.), 84–89.

JOHNSON, R., PEARSON, D., AND PINGALI, K. 1994. The program structure tree: Computing
control regions in linear time. In Proceedings of the ACM SIGPLAN ’94 Conference on
Programming Language Design and Implementation. ACM, New York, 171–185.

MCCALPIN, J. D. 1995. Memory bandwidth and machine balance in high performance
computers. IEEE Tech. Comm. Comput. Arch. Newslett. See also http://www.cs.virginia.edu/
stream.

Continuous Profiling • 389

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

MIPS. 1990. UMIPS-V reference manual (pixie and pixstats). MIPS Computer Systems,
Sunnyvale, Calif.

REISER, J. F. AND SKUDLAREK, J. P. 1994. Program profiling problems, and a solution via
machine language rewriting. SIGPLAN Not. 29, 1 (Jan.), 37–45.

ROSENBLUM, M., HERROD, S., WITCHEL, E., AND GUPTA, A. 1995. Complete computer simula-
tion: The SimOS approach. IEEE Parallel Distrib. Tech. 3, 3 (Fall).

SITES, R. AND WITEK, R. 1995. Alpha AXP architecture reference manual. Digital Press,
Newton, Mass.

ZAGHA, M., LARSON, B., TURNER, S., AND ITZKOWITZ, M. 1996. Performance analysis using the
MIPS R10000 performance counters. In Proceedings of Supercomputing.

ZHANG, X., WANG, Z., GLOY, N., CHEN, J. B., AND SMITH, M. D. 1997. Operating system
support for automated profiling and optimization. In Proceedings of the 16th ACM Sympo-
sium on Operating Systems Principles. ACM, New York.

Received July 1997; revised September 1997; accepted September 1997

390 • Jennifer M. Anderson et al.

ACM Transactions on Computer Systems, Vol. 15, No. 4, November 1997.

