
Covariance and Contravariance:

Conflict without a Cause

GIUSEPPE CASTAGNA

C. N.R.S.

In type-theoretic research on object-oriented programming, the issue of “covarianceversus con-

travariance” is atopicof continuing debate. In this short notewe argue that covariance and con-

travariance appropriately characterize two distinct and independent mechanisme. The so-called

contravariance rule correctly captures the subtyping relation (that relation which establishes which

sets of functions can replace another given set m eve~ contezt). A covariant relation, instead,

characterizes the speczalizatzon of code (i.e., the definition of new code which replaces old def-

initions in some particular cases). Therefore, covariance and contravariance are not opposing

views, but distinct concepts that each have their place inobject-oriented systems. Both can (and

should) be integrated in a type-safe manner in object-oriented languages. We also show that

the independence of the two mechanisms is not characteristic of aparticular model but is valid in

general, since covariant specialization is present in record-based models, although it is hidden by a

deficiency ofallexisting calculi that realize this model. Asanaside, weshowthat the A&-calculus

can betaken asthebmic calculus for both anoverloading-bmed and arecord-based model, Using

this approach, onenotonly obtains amoreuniform vision ofobject-oriented type theories, but in

the case of the record-based approach, one also gains multiple dispatching, a feature that existing

record-based models do not capture.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifica-

tions—object-otiented languages; F.3.3 [Logics and Meanings of Programs]: Studies of Pro-

gram Constructs—type structure

General Terms: Theory, Languages

Additional Key Words and Phraaes: Object-oriented languages, type theory

1. INTRODUCTION

In type-theoretic research on object-oriented programming, the issue of “covariance

versus contravariance” has been, and still is, the core of a heated debate. The dis-

cussion goes back, in our ken, to at least 1988, when L6cluse, Richard, and V61ez

used “covariant specialization” for the methods in the 02 data model [L6cluse

et al. 1988]. Since then, it has been disputed whether one should use covari-

ant or contravariant specialization for the methods in an object-oriented language.

The fact that this debate is still heated is witnessed by the excellent tutorial on

object-oriented type systems given by Michael Schwartzbach at the last POPL con-

ference [Schwartzbach 1994]: in the abstract of his tutorial Schwartzbach fingers

This work was partially supported by grant no. 203.01.56 of the Consiglio Nazionale delle Rlcerche,

Comitato Nazionale delle Scienze Matematiche, Italy, to work at LIENS.

Author’s address: LIENS, 45 rue d’Ulm 75005 Paris, Ih-ante; email: castagna(@dmi.ens. fr.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial

advantage, the copyright notice, the title of the publication, and its date appear, and notice is

given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and\or a fee.

@ 1995 ACM 0164-0925/95/0500-0431 $03.50

ACM l’ransactlons on Programnung Languages and Systems, Vol 17, No 3, May 1995, Pages 431–447

432 . Gluseppe Castagna

the “covarianceversus contravariance” issue as akeyexample of the specificity of

object-oriented type systems.

In this short note we argue that the choice between covariance and contravari-

anceis a false problem. Covariance and contravariance characterize two completely

distinct mechanisms: subtyping and specialization. The confusion of the two made

them appear mutually exclusive. In fact, covariance and contravariance are not

conflicting views but distinct concepts that can be integrated in a type-safe formal-

ism. Finally, we argue that it would be an error to exclude either of them, since

then the corresponding mechanism could not be properly implemented.

This result is clear in the model of object-oriented programming defined by

Giuseppe Longo, Giorgio Ghelli, and the author in Castagna et al. [1995]; it is

already present in Ghelli’s seminal work [Ghelli 1991], and it is somehow hidden in

the work on OBJ [Goguen and Meseguer 1989; Jouannaud et al. 1992; Marti-Oliet

and Meseguer 1990]. In these notes we want to stress that this result is indepen-

dent of the particular model of object-oriented programming one chooses, and that

covariance and contravariance already coexist in the record-based model proposed

by Luca Cardelli in Cardelli [1988], and further developed by many other authors

(see the collection [Gunter and Mitchell 1994] for a wide review of the record-based

model).

The article is organized as follows. In Section 2, we recall the terms of the problem

and we hint at its solution. In Section 3, we introduce the overloading-based model

for object-oriented programming and give a precise explanation of subtyptng and

spectalazatzon. We then show how and why covariance and contravariance can

coexist within a type-safe calculus. We use this analysis to determine the precise

role of each mechanism and to show that there is no conflict between them. Section

4 provides evidence that this analysis is independent of the particular model by

revealing the (type-safe) covariance in the record-based model. Section 5 contains

our conclusions and the golden rules for the typesafe usage of covariance and

cent ravariance.

We assume that the reader is familiar with the objects-as-records model of object-

oriented programming and is aware of the typing issues it raises.

The presentation is intentionally kept informal: no definitions, no theorems. It

is not a matter of defining a new system but of explaining and comparing existing

ones: indeed, all the technical results have already been widely published.

2. THE CONTROVERSY

The controversy concerning the use of either covariance or contra~-ariance can be

described as follows. In the record-based model. proposed b>- Luca Cardelli in
1984 [Cardelli 1988], an object is modeled by a record, w-hose fields contain all

the methods of the object and whose labels are the corresponding messages that

invoke the methods. An object can be specialized to create a new object in two

different ways: either by adding new methods —i.e., new fields— or by redefining

the existing ones —i.e., overriding old methods. 1 A specialized object can be used

wherever the object it specializes can be used. This implies that method overriding

lIt is unimportant in this context whether the specialization IS performed at object level (delega-

tion) or at class level (mherltance),

ACM Transactions on Programming Langnages and Systems, Vol 17, No 3, May 1995

Covariance and Contravariance . 433

must be restricted if type safety is desired. A sufficient condition to assure type

safety (at least for method specialization) is the requirement that each field can be

specialized only by terms whose types are “subtypes” of thetypeof the field.

The core of the covariance/contravariance controversy concerns methods that

have a functional type. The subtyping relation for functional types is defined in

Cardelli [1988] as follows:

If we consider the arrow “+” as a type constructor, then, borrowing the terminol-

ogy of category theory, “--+ “ is a functor covariant on the right argument (since

it preserves the direction of “<”) and contravariant on the left argument (since it

reverses the direction of “<”). Taking the behavior of the left argument as char-

acteristic, this rule has been called the contravariant rule.2 If an arrow “+” is

covariant on the left argument (i.e., if in the rule above the sense of the first in-

equality is reversed), then type safety is lost. With this modified rule, it is quite

easy to write a statically well-typed term that produces a run-time type error.

Despite its unsoundness, covariant specialization has its tenacious defenders, and

not without cause. (Eiffel [Meyer 1991] and the 02 system [Bancilhon et al. 1992],

for example, use covariant specialization.) The contravariant rule, besides being

less intuitive than the covariant one, is the source of many problems. The most

surprising one appears with binary methods and can be exemplified as follows.

Consider an object 01 of a given type T, from which we create another object 02

of type S via specialization. Suppose we have defined a method equal for these

objects, which compares the object at issue with another object of the same type.

This equal method has type T x T -i Bool for the object 01 and S x S --+ Bool for

the object 02. In the record-based approach, the fields labeled equal will have the

type T --+ Bool in 01 and 5’ --+ Bool in 02 since the method belongs to the object,

and thus it already knows its first argument, usually denoted by the keyword self.

If the contravariant rule is used, the type associated with equal for S-objects is not

a subtype of the type for equal in T-objects. Thus, in order to have type safety,

one must not use oz as a specialization of 01. In other ‘words, S must not be a

subtype of T. This is quite unintuitive. Imagine that you have objects for real

numbers and for natural numbers. As soon as a number can respond to a message

that asks it whether it is equal to another number, then a natural number can

no longer be used where a real number is expected! Furthermore, experience with

02 (which is the third most sold object-oriented database management system in

the world) shows that the unsoundness of the type-checker has not caused many
problems in practice. Thus, many people prefer to give up type safety and use the

covariant subtyping rule for specialization. The general conclusion is that one has

to use contravariance when static type safety is required, but otherwise covariance

is more natural, flexible, and expressive.

The viewpoint of the covariance advocates and the one of the contravariance

advocates are both very appealing, and yet they seem totally incompatible. How-

‘Although co-contmvaraant rule would be a better name for this rule, we prefer to adopt

the name in usage in the object-oriented community. Therefore, in the rest of the article we

will use ‘[contravariance,” ‘[contravariant rule,” and “contravariant specialization” to denote the

co-contravariant behavior of the arrow.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.

434 . Giuseppe Castagna

ever, there is a flaw in the comparison made above: covariance in 02’s (nearly)

overloading-based model is compared with contravariance in the record-based model,

The difference between the two models is in the type of the parameter self, which

appears in the former model but disappears in the latter one (see the type of equal

in the previous example). The conclusion drawn above is wrong because, as we will

show in the next two sections, it does not take into account the disappearance of

this type from one model to the other. Thus, we will proceed by studying both

covariance and contravariance, first in the overloading-based model (Section 3) and

then in the record-based one (Section 4). We will show that both covariance and

contravariance can be used in a way that guarantees type safety. To achieve this

end, we need not impose any further restrictions, just point out what the two

concepts serve for.

Before proceeding, let us fix some terminology. Recall that each object has a set

of private operations associated with it, called methods in Smalltalk [Goldberg and

Robson 1983], Objective-C [Pinson and Wiener 1992], and CLOS [DeMichiel and

Gabriel 1987], and member functions in C++ [Stroustrup 1986]. These operations

can be executed by applying a special operator to the object itself: the object is

the receiver of a message in Smallt alk and Objective-C, the argument of a generic

function in CLOS, and the left argument of a dot selection in C++. In order to

simplify the exposition we refer to all of these different ways of selecting a method

as “message-sending” operations: the message is the name of the generic function

in CLOS and the right argument of dot selection in C++. Additionally, a message

may have some parameters. They are introduced by keywords in Smalltalk and

Objective-C; they are the arguments of an n-ary generic function in CLOS, 3 and

they are surrounded by parenthesis in C++.

Now (and here we enter the core of our discussion) the type (or class) of the actual

parameters of a message may or may not be considered in the run-time selection

of the method to execute. For example in CLOS, the type of each argument of

a generic function is taken into account in the selection of the method. In C++,

Smalltalk, and Objective-C, no arguments are considered: the type of the receiver

alone drives the selection.4 In the following sections, we formally show that given

a method m selected by a message with parameters, when m is overridden, the

parameters that determine the (dynamic) selection must be covariantly overridden

(i.e., the corresponding parameters in the overriding method must have a lesser

type). Those parameters that are not taken into account in the selection must

be contravariantly overridden (i.e., the corresponding parameters in the overriding

method must have a greater type).

3. THE FORMAL STATEMENT

In this section we give a formal framework in which to state precisely the elements

of the problem intuitively explained in the section before. We first analyze the

3StrictlY ~Peaking, it is not ~o~sible in cLOS to identify a prwileged “recewer” for the generic

function.

4The use of overloading in C++ requires a brief remark C++ resolves overloading at compde

time, using static types; dynamic method look-up does not affect which code is executed for an

overloaded member function. At run-time, the code for such functions has already been expanded

For this reason, the overloading in C++ is quite different from the one we describe in Section 3

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.

Covariance and Contravariance . 435

problem in the overloading-based model [Castagna et al. 1995] since in this model

the covariance-contravariance issue has a clearer formalization. In Section 4 we will

discuss the record-based model.

The idea in the overloading-based model is to type messages rather than objects.

More precisely, we assume that messages are special functions composed of sev-

eral (ordinary) functions: the methods. When a message is sent to an object of

a given class, the method defined for objects of that class is selected from among

those composing the message. The object is passed to the selected method, which is

then executed. This model is quite natural for programmers used to languages with

generic functions such as CLOS or Dylan [Apple Computer Inc. 1992] (generic func-

tions of CLOS coincide to our special functions), while its understanding requires

an effort of abstraction to programmers used to other object-oriented languages

that group methods inside their host objects —as formalized in the record-based

model— instead of inside the messages

However, if we ignore implementation issues, these two ways of grouping methods,

either by object or by message, are essentially equivalent, since they are simply two

different perspectives of the same scene. This is also true from the typetheoretic

point of view, as suggested by Section 4.

Class definitions are used to describe objects. A class is generally characterized

by a name, a set of instance variables, and a set of methods. Each method in a

class is associated to a message. In the overloading-based model we further assume

that classes are used to type their instances .5 Under this assumption, messages

are special functions composed of several codes (the methods); when one special

function is applied to an argument (i.e., the messages is sent to the argument), the

code to execute is chosen according to the class, i.e., the type, of the argument. In

other words, messages are overloaded junctions. When such functions are applied,

code selection is not performed at compile time, as is usual, but must instead

be done at run-time using a late binding or late selection strategy (this run-time

selection is sometimes also called dynamic binding or dynamic dispatch). We can see

why run-time selection is necessary by considering the following example. Suppose

that we code a graphical editor in an object-oriented style. Our editor uses the

classes Line and Square, which are subclasses (subtypes) of Picture. Suppose that

we have defined a method draw on all three classes. If method selection is performed

at compile time, then the following message draw

Ax “c’tire.(. . . z + draw ...)

is always executed using the draw code defined for Pictures, since the compile-time

type of x is Picture. With late binding, the code for draw is chosen only when the

x parameter has been bound and evaluated, on the basis of the run-time type of x,

i.e., according to whether x is bound to an inst ante of Line or Square or Picture.

Overloaded functions with late binding are the fundamental feature of the over-

loading-based model, in the same way that records are the fundamental feature of

the record-based model. To study the latter, Cardelli extended the simply typed

5We prefer to be a little vague, for the moment, about the precise definition of typing for objects:

in the case of name subtypingj the name of the class is used as Its type. In the case of structural

subtyping, the functionality of the object is used instead

ACM Transactions on Programming Languages and Systems, Vol 17, No. 3, May 1995

436 . Giuseppe Castagna

lambda calculus with subtyping and records. To study the former, we extended

the simply typed lambda calculus with subtyping and overloaded functions. This

extension led to the definition of the A&-calculus, the intuitive ideas of which can be

described as follows (for a detailed presentation see Castagna [1994] and Castagna

et al. [1995]; see also Castagna [1995a] for the second-order case).

An overloaded function consists of a collection of ordinary functions (i.e., A-

Abstractions), each of which is called a branch of the overloaded function. We chose

the symbol & (whence the name of the calculus) to glue together ordinary functions

into an overloaded one. Thus we add to the simply typed lambda calculus terms

of the form

(ill&N)

which intuitively denotes an overloaded function of two branches, M and N. When

(M&N) is applied to an argument, one of the two branches will be selected accord-

ing to the type of the argument. We must distinguish ordinary application from

the application of an overloaded function because they are fundamentally different

mechanisms. The former is implemented by substitution while the latter is imple-

mented by selection. We use “*” to denote overloaded application and “.” for the

usual one.

We build overloaded functions as lists: we start with the empty overloaded func-

tion, denoted by E, and concatenate new branches via&. Hence in the term above,

M is an overloaded function while N is an ordinary one, i.e., a branch of the re-

sulting overloaded function. We can write an overloaded function with n branches

Ml, Mz, . ..Mn as

((~ ~((&&Ml)&Mz) . . .)&Mn).

The type of an overloaded function is the set of the types of its branches. Thus if

M,: U, + V,, then the overloaded function above has type

{Ul+vl, ug+vz,..., un+vn}.

If we pass to this function an argument N of type UJ, then the selected branch will

be Mj. More formally:

(E&M1&. . . &Mn)*N P* M3.N (*)

where D* means “rewrites in zero or more steps into. ”

In short, we add the terms E, (M&N), and (MoN) to the terms of the simply

typed lambda calculus, and we add sets of arrow types to the types of the simply
typed lambda calculus.

We also add a subtyping relation on types. Intuitively, if U < V then any

expression of type U can be used “safely” (w. r.t. types) wherever an expression of

type V is expected; with this definition, a calculus will not produce run-time type

errors as long as its evaluation rules maintain or reduce the types of its terms. The

subtyping relation for arrow types is the one of Cardelli [1988]: covariance on the

right and contravariance on the left. The subtyping relation for overloaded types

can be deduced from the observation that an overloaded function can be used in

the place of another overloaded one when, for each branch of the latter, there is

one branch in the former that can replace it. Thus, an overloaded type U is smaller

ACM Transactions on Programming Languages and Systems, Vol 17, No 3, May 1995

Covariance and Contravariance . 437

than another overloaded type V if and only if, for any arrow type in V, there is at

least one smaller arrow type in U. Formally:

Because of subtyping, the type of N in (*) may not match any of the U% but just

be a subtype of one of them. In this case, we choose the branch whose U% “best

approximates” the type of N, More precisely, if the type of N is U, we select the

branch h such that uh = min{U% IU < U,}.

In our system, not every set of arrow types can be considered an overloaded type,

however. In particular, a set of arrow types {U, + ~}ac, is an overloaded type if

and only if for all i, j in I it satisfies these two conditions:

(1) U maximal in LB(Ui, U,) + there exists a unique h c I such that vh = U

(2) U, <u, + I’(<&

where LB(U,, U3) denotes the set of common lower bounds of U, and Uj.

Condition (1) concerns the selection of the correct branch. We said earlier that

if we apply an overloaded function of type {Ul + VZ}$EI to a term of type U, then

the selected branch has type UJ 4 Vj where UJ = minteI {U, \U < U,}. Condition

(1) guarantees the existence and uniqueness of this branch (it is a necessary and

sufficient condition for existence, as proved in Castagna [1994]).

More interesting for the purposes of this article is the second condition, which we

call the covariance condition. Condition (2) guarantees that during computation

the type of a term may only decrease. More concretely, if we have a two-branch

overloaded function M of type {Ul -+ V1, U2 + V2 } with U2 < U1, and we pass

to it a term N, which at compile-time has type U1, then the compile-time type of

M*N will be VI. If the normal form of N has type U2, however, (which is possible,

since Ut < U1) then the run-time type of M*N will be Vz. Condition(2) requires

that V2 s VI.

So far, we have shown how to include overloading and subtyping in the calculus.

Late binding still remains. A simple way to obtain it is to impose the condition

that a reduction like (*) can be performed only if N is a closed normal form. With

this restriction, the most precise type for N is apparent whenever the argument is

used to select the appropriate branch from an overloaded function.

Let us stress, once more, that it is important to understand that overloaded

functions with late binding are significantly different from the form of overloaded

functions found in C or definable C++, for example. With late binding, overloading

is resolved at run-time, while C/C++ overloaded functions are resolved at compile

time.

At this point we can intuitively show how to use this calculus to model object-

oriented languages by noting that in A& it is possible to encode subjective pairings,

simple records (those of Cardelli [1988]) —as described in Section 4— and extensible

records (see Cardelli and Mitchell [1991], R6my [1989], and Wand [1987]). These

encodings can be found in Castagna [1994].

Conditions (1) and (2) have a very natural interpretation in object-oriented lan-

guages. Suppose that mesg is the identifier of an overloaded function with the

ACM Transactions on Programming Languages and Systems, Vol 17, No. 3, May 1995.

438 . Giuseppe Castagna

following type:

mesg

In object-oriented jargon, mesg

: {Cl + TI, C, 4 T,}.

is then a message containing two methods, one

defined in the class C’I and the other in the class C2: class Cl’s method returns a

result of type T1, while class C2’s method returns a result of type T2. If Cl is a

subclass of C2 (more precisely a subtype: Cl ~ C2), then the method of Cl overrides

the one of C2. Condition (2) requires that T1 < T2. That is to say, the covariance

condition expresses the requirement that a method that overrides another one must

return a smaller type. If instead Cl and C2 are unrelated, but there exists some

subclass C3 of both of them (C3 < Cl, C2), then C3 has been defined by multiple

mheritunce from Cl and C2. Condition (1) requires that a branch be defined for C3

in mesg, i.e., in case of multiple inheritance, methods defined for the same message

in more than one ancestor must be explicitly redefined.

Let us see how this all fits together by an example. Consider the class 2DPoint

with two integer instance variables x and y and subclass 3DP0 int, which has an ad-

ditional instance variable z. These relationships can be expressed with the following

definitions:

class 2DPoint class 3DPoint is 2DPoint

{ {
x: Int; x: Int;

y: Int y: Int;

} z: Int

}

where in place of the dots are the definitions of the methods. To a first ap-

proximation, these classes can be modeled in J& by two atomic types 2DPoint

and 3DPoznt with 3DPoint < 2DPoint, whose respective representation types are

the records ((x: Int ; y: Int)) and ((z: Int ; y: Int ; z: Int)). Note that the assumption

3DPoint<2DPoint is “compatible” with the subtyping relation on the correspond-

ing representation types.

One method that we could include in the definition of 2DPoint is

norm = sqrt(self .X-2 + self .y”2)

where self denotes the receiver of the message, We may override this method in

3DPoint with the following method

norm = sqrt(self .x’2 + self .y”2 + self z-2) .

In A&, these methods are written as a two-branch overloaded function:

norm c (Aself 2Dp0%nt. sel~x2 + sel~y2

& Melj 3Dp0’nt. ~ selJx2 + sel~y2 + selj.z2

)J

where e is omitted for brevity. The type of this overloaded function is { 2DPoint +

Real , 3DPoint ~ Real}. Note that self becomes in A& the first parameter of the

overloaded function, i.e., the one whose class determines the select ion.

ACM Transactions on Programming Langnages and Systems, Vol. 17, No 3, May 1995,

Covariance and Contravariance . 439

Covariance appears when, for example, we define a method that modifies the

instance variables. For example, a method initializing the instance variables of

2DPoint and 3DPoint objects will have the following type

initialize : {2DPoint -+ 2DPoint , 3DPoint -+ 3DPoint}.

In this framework, the inheritance mechanism is given by subtyping plus the branch

selection rule. If we send a message of type {Cz -+ T%}t~l to an object of class c,

then the method defined in the class mini= l,,n{C, IC ~ C,} will be executed. If this

minimum is exactly C, then the receiver uses the method defined in its own class; if

the minimum is strictly greater than C, then the receiver uses the method that its

class, C, has inherited from the minimum. Note that the search for the minimum

corresponds exactly to Smalltalk’s “method look-up,” where one searches for the

least superclass (of the receiver’s class) for which a given method has been defined.

Modeling messages by overloaded functions has some advantages. For example,

since these functions are first-class values, so are messages. It becomes possible

to write functions (even overloaded ones) that take a message as an argument or

return one as result. Another interesting characteristic of this model is that it

allows methods to be added to an already existing class C without modifying the

type of its objects. Indeed, if the method concerned is associated with the message

m, it suffices to add a new branch for the type C to the overloaded function denoted

by m.6

In the context of this article, however, the most notable advantage of using over-

loaded functions is that it allows multiple dispatch.7 As we hinted in the previous

section, one of the major problems of the record model is that it is impossible

to combine satisfactorily subtyping and binary methods (i.e., methods with a pa-

rameter of the same class as the class of the receiver). This problem gave rise to

the proposed use of the unsound covariant subtyping rule. Let us reconsider the

point example above, adding the method equal. In the record-based models, two-

dimensional and three-dimensional points are modeled by the following recursive

records:

2EqPoint R ((x: Int; y: Int; equal: 2EqPoint ~ Bool))

3EqPoint = ((z: Int; y: Int; z: Int; equal: 3EqPoint - Bool)).

Because of the contravariance of arrow, the type of the field equal in 3EqPoint is

not a subtype of the type of equal in 2EqPoint. Therefore 3EqPoint $ 2EqPoint.8

Let us consider the same example in A&. We have already defined the atomic

types 2?DPoint and 3DPoint. We can still use them since, unlike what happens in

the record case, adding a new method to a class does not change the type of its

instances. In A&, a declaration such as

equak { 2DPoint ~ (2DPoint -+ Bool) , 3DPoint -+ (3DPoint ~ Bool)}

6It is important to remark that the new method is available at once to all the instances of c,

and thus it is possible to send the message m to an object of class c even if this object hss been

defined before the branch for C in m.
7That i~, the capability of selecting a method taking into account other classes besides that of the

receiver of the message.
8The Subtyping rule for recursive type,s says that if from X < Y one can deduce that U < V then
#X.U < #YV follows. In the example above, 213gPoint = UX. ((z: Int; y: Int; equal: X 4 Bool)).

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.

440 . Giuseppe Castagna

is not well defined either: because 3DPoint < 2DPoznt, condition (2) —the covari-

ance condition— requires that 3DPotnt ~ Bool ~ 2DPoint ~ Bool, which does

not hold because of the contravariance of arrow on the left argument. It must be

noted that such a function would choose the branch according to the type of just

the first argument. Now, the code for equal cannot be chosen until the types of

both arguments are known. This is the essential reason why the type above must

be rejected (in any case, it is easy to write a term with the above type producing an

error). In A&, however, it is possible to write a function that takes into account the

types of two (or more) arguments for branch selection. For equal, this is obtained

as follows:

equal { (2DPoint x 2DPoznt) -+ Bool , (3DPoint x 3DPoint) ~ Bool}.

If we send to this function two objects of class 3DPoint, then the second branch is

chosen; when one of the two arguments is of class 2DPoint (and the other is of a

class smaller than or equal to 2DPoint), the first branch is chosen.

At this point, we are able to make precise the roles played by covariance and

contravariance in subtyping: contravariance is the correct rule when you want to

substitute a function of a given type for another one of a different type; covari-

ance is the correct condition when you want to specialize (in object-oriented jargon

“override”) a branch of an overloaded function by one with a smaller input type.

It is important to notice that, in this case, the new branch does not replace the old

branch, but rather it conceak it from the objects of some classes. Our formaliza-

tion shows that the issue of “contravariance versus covariance” was a false problem

caused by the confusion of two mechanisms that have very little in common: sub-

stitutivity and overriding.

Substitutivity establishes when an expression of a given type S can be used an

place of an expression of a different type T. This information is used to type

ordinary applications. More concretely, if j is a function of type T ~ U, then we

want to characterize a category of types whose values can be passed as arguments

to f; it must be noted that these arguments will be substituted, in the body of the

function, for the formal parameter of type T. To this end, we define a subtyping

relation such that f accepts every argument of type S smaller than T. Therefore,

the category at issue is the set of subtypes of T. When T is T1 -+ T2 it may

happen that, in the body of f, the formal parameter is applied to an expression

of type T1. Hence, we deduce two facts: the actual parameter must be a function

(thus, if S s TI ~ Tz, then S has the shape SI ~ S2), and furthermore, it must

be a function to which we can pass an argument of type T1 (thus T1 ~ S1, yes!

. . . contravariance). It is clear that if one is not interested in passing functions as

arguments, then there is no reason to define the subtyping relation on arrows (this

is the reason why 02 works well even without contravarianceg).

Overriding is a totally different feature. Suppose we have an identifier m (in the

circumstances, a message) that identifies two functions f : A ~ C and g : B ~ D

where A and B are incomparable. When this identifier is applied to an expression

e, then the meaning of the application is ~ applied to e if e has a type smaller than

$JElffel ~OmPenSate~ the holes resulting from the use of covarlance by a hnk-time data-flow analYsis

of the program.

ACM Transactions on Programmmg Languages and Systems, Vol. 17, No. 3, May 1995,

Covariance and Contravariance . 441

A (in the sense ofsubstitutivity explained above), org applied to eif ehas type

smaller than B. Suppose now that B ~ A. The application in this case is resolved

by selecting f if the type of e is included between A and B, or by selecting g if

the type is smaller than or equal to B. There is a further problem, however. The

types may decrease during computation. It may happen that the type checker sees

that e has type A, and infers that m applied to e has type C (f is selected). But

if, during the computation, the type of e decreases to B, the application will have

type D. Thus, D must be a type whose elements can be substituted for elements

of type C (in the sense of substitutivity above), i.e., D ~ C. You may call this

feature covariance, if you like, but it must be clear that it is not a subtyping rule:

g does not replace f since g will never be applied to arguments of type A. Indeed,

g and f are independent functions that perform two precise and different tasks:

f handles the arguments of m whose type is included between A and B, while g

handles those arguments whose type is smaller than or equal to B. In this case,

we are not defining substitutivity; instead, we are giving a formation rule for sets

of functions in’ order to ensure the type consistency of the computation. In other

words, while contravariance characterizes a (subtyping) rule, i.e., a tool to deduce

an existing relation, covariance characterizes a (formation) condition, i.e., a law

that programs must observe.

Since these arguments are still somewhat too abstract for object-oriented prac-

titioners, let us write them in “plain” object-oriented terms as we did at the end

of Section 2. A message may have several parameters, and the type (class) of each

parameter may or may not be taken into account in the selection of the appro-

priate method. If a method for that message is overridden, then the parameters

that determine the selection must be covariantly overridden (i.e., the corresponding

parameters in the overriding method must have a lesser type). Those parameters

that are not taken into account for the selection must be contravariantly overridden

(i.e., the corresponding parameters in the overriding method must have a greater

type).

How is all this translated into object-oriented type systems? Consider a message

m applied (or “sent”) to n objects el . . . en where e% is an instance of class C%.

Suppose we want to consider the classes of only the first k objects in the method

selection process. This dispatching scheme can be expressed using the following

not at ion:

m(el,eklek+l. en), en).

If the type of m is {S, --i Ti },=1, then the expression above means that we want to

select the method whose input type is the min,e I {S’, [(Cl x . . . x Ck) < St} and

then to pass it all the n arguments. The type, say Sj -+ Tj, of the selected branch

must have the following form:

(Al x... xAk)+(Ak+l x.. .x An)+ U
~~

SJ TJ

where C% ~ A% for 1< is k and Ai < Ci for k <is n. 10 If we want to override the

10 Ind~ed, by the Covariance condition, all methods whose input type is compatible with the one

of the arguments must be of this form.

ACM Transactions on Programming Languages and Systems, Vol. 17, No, 3, May 1995,

442 . Giuseppe Castagna

selected branch by a more precise one, then, as explained above, the new method

must covariantly override Al . . . Ak (to specialize the branch) and contravariantly

override Ak+l . . . Am (to have type safety).

4. COVARIANCE IN THE RECORD-BASED MODEL

We said in the previous section that covariance must be used to specialize the

arguments that are taken into account during method selection. In record-based

models, no arguments are taken into account in method selection: the method to

use is uniquely determined by the record (i. e., the object) that the dot selection

is applied to. Thus in these models, it appears that we cannot have a covariance

condition.

Strictly speaking, this argument is not very precise, since the record-based model

does possess a limited form of “covariance” (in the sense of a covariant dependency

that the input and the output of a message must respect), but it is hidden by the

encoding of objects. Consider a label 4. By the subtyping rule for record types, if

we “send” this label to two records of type S and T with S s T, then the result

returned by the record of type S must have a type smaller than or equal to the type

of the one returned by T. This requirement exactly corresponds to the dependency
11 but its form is much more limited beexpressed by the covariance condition (2),

cause it applies only to record types (since we “sent” a label), but not to products

(i.e., multiple dispatch) nor to arrows. We may see this correspondence bY treating

a record label ~ as a potentially infinitely branching overloaded function that takes

as its argument any record with at least a field labeled by t and returns a value of

the corresponding type:

e : { ((i?:7’)) + T }7’eTypes

Note that this treatment respects the covariance condition (2) since ((P: T)) ~

((L: T’)) implies T S T’. Though, all the types of the arguments are records of

the same form; no other kind of type is allowed. Hence record-based models pos-

sess only a limited form of covariance, an “implicit” covariance.

However the idea is that “explicit” covariance without multiple dispatching does

not exist. Actual record-based models do not possess multiple dispatching. This

lack does not mean that the analogy “objects as records” is incompatible with

multiple dispatching, however. The problem is simply that the formalisms that use

this analogy are not expressive enough to model it.

In the rest of this section, therefore, we show how to construct a record-based

model of object-oriented programming using the MZcalculus, i.e., we use A& to

describe a model in which objects will be modeled by records. In the model we
obtain, it will be possible to perform multiple dispatch, and hence we will recover

the covariance relation. Thus, we will have shown by example that covariance and

contravariance can cohabit in type-safe systems based on the analogy of “objects

as records. ”

The key point is that records can be encoded in A&. By using this encoding, we

11ReCS,ll that in the overload ing-bwd model, covarlance hm exactly the same meanmg ss here.

That E., the smaller the type of the object that a message (label) 1s sent to, the smaller the type

of the result,

ACM Transactions on Programming Languages and Systems, Vol. 17, No 3, May 1995.

Covariance and Contravariance . 443

can mimic any model based on simple records, but with an additional benefit: we

have overloaded functions. For the purposes of this article, simple records suffice.

Let us recall their encoding in A& as given in Castagna et al. [1995].

Let L1, Lz,. . . be an infinite list of atomic types. Assume that they are isolated

(i.e., for any type T, if L% ~ T or T ~ L,, then Li = T), and introduce for each

L, a constant /,: L,. It is now possible to encode record types, record values, and

record field selection, respectively, as follows:

((l,: v,; . ..n.vn)))) ~ {Ll+V,,..., Ln+Vn}

In words, a record value is an overloaded function that takes as its argument a

label —each label belongs to a different type- that is used to select a particular

branch (i.e., field) and then is discarded (since (~~t @ FV(M,)). Since Ll . . . L~

are isolated, the typing, subt yping, and reduction rules for records are special cases

12 of the rules for overloaded types. Henceforth, to enhance readability, we will use

the record notation rather then its encoding in A&. All the terms and types written

below are encodable in Mz.13

Consider again the equal message. The problem, we recall, was that it is not

possible to select the right method by knowing the type of just one argument. The

solution in the overloading-based approach was to use multiple dispatching and to

select the method based on the class of both arguments. We can use the same

solution with records. Thus, the method defined for 2EqPoint must select different

code according to the class of the “second” argument (similarly for 5’EqPoint).

This can be obtained by using in the field for equal an overloaded function. The

definition of the previous two recursive types therefore becomes:

2EqPoint E ((z: Int;

y: Int;

equal: {2EqPoint --+ Bool, 3EqPoint 4 Bool}

))

3EqPoint - ((z: Int;

y: Int;

z: Int;

equal: {2EqPoint - Bool, 3EqPoint --+ Bool}

))

Note that now 3EqPoint52EqPoint. The objection may now be raised that when

we define the class 2EqPoint, the class 3EqPoint may not exist yet, and so it

would be impossible to define in the method equal for 2EqPoint the branch for

3EqPoint. But note that a lambda abstraction maybe considered as a special case

of an overloaded function with only one branch and thus that an arrow type may

12There is an ~’if and only if” relation, e.g., the encodings of two record types are in subtyping

relation if and only if the record types are in the same relation.
13More precisely, in A& plus recursive tYPes.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.

444 . Giuseppe Castagna

be considered as an overloaded type with just one arrow (it is just a matter of

notation; see Section 4.3 of Castagna [1994]). Hence, we could have first defined

2EqPoint as

2EqPoint E ((x: Int;

y: Int;

equal: {2EqPoint + Bool}

))

and then added the class 3EqPoint with the following type:

3EqPoint = ((x: Int;

y: Int;

z: Int;

equal: {.2EqPoint -+ Bool, 3EqPoint + Bool}

))

Note that again 3EqPoint~ 2EqPoint holds. An example of objects with the types

above is

Y (A self 2Eqp0’n’.

(x= o;
y= ();

equal = ~p2~qp0zmt.(seZf.x = IJ.X) A (self .y = p.y)

))

Y (A5elf3Eqp0’nt.

(z= o;
y= ();

,Z=O;

equal =(Ap2E’JpO’nt .(se/f.x = p.z) A (self.y = p.y)

&~p3~’pO’n’.(self.z = p.z) A (self.y = p.y) A (self..z = p.z))

))

where Y is the fixpoint operator (which is encodable in A&: see Castagna [1994]).

The type safety of expressions having the types above is assured by the type safety

of the A&-calculus. Indeed, the type requirements for specializing methods as in the

case above can be explained in a simple way: when specializing a binary (or general

n-ary) method for a new class C’ from an old class C, the specialized method must

specify not only its behavior in the case that it is applied to an object of the the

new class C’, but also its behavior in the case that it is applied to an object of the

old class C. Going back to our example of Section 2, this is the same as saying that
when one specializes the class of natural numbers from the real numbers, then type

safety can be obtained by specifying not only how to compare a natural number

to another natural number, but also how to compare it to a real number. The

conclusion is that in the record-based approach, specialization of functional fields

is done by using (contravariant) subtypes, but to make specialization type-safe

and convenient with binary (and general n-ary) methods, we must more accurately

specialize binary (and general n-ary) methods by defining their behavior not only

for the objects of the new class, but also for all possible combinations of the new

objects with the old ones.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.

Covariance and Contravariance . 445

One could object that if thesubtyping hierarchy were very deep, this approach

would require us to define many branches, one for each ancestor, and that in most

cases these definitions would never be used. Actually, many of these definitions are

not necessary. Indeed, in all cases, two branches will suffice to assure type safety. 14

For example, suppose that we further specialize our equality-point hierarchy by

adding further dimensions. When we define the nEqPoint, it is not necessary to

define the behavior of the equal method for nEqPoint, (n-l)EqPoint,. . . . 2EqPoznt;

two branches are more than enough: one for 2EqPoint (the only one really neces-

sary), the other for nEqPoint. Why? The reason is that from the subt yping rules,

it follows that if for all i 6 1, T, ~ T then {T 4 S} ~ {Tt - S}z=I. If we take

2’EqPoint for T and the various (n-k) EqPoint for T, we may see that the branch

2EqPoint-+ Bool suffices in the definition of nEqPoint to guarantee type safety;

all the other branches are not strictly necessary, but they may be added at will.

Furthermore, if the branch that guarantees type safety is missing, it can be added

in an automatic way. Therefore, multiple dispatch can be embedded directly into

the compiler technology in order to “patch” programs of languages that, like 02,

use covariant subtyping, without modifying the language’s syntax. In that case

type safety is obtained without any modification of the code that already exists: a

recompilation is enough (see Castagna [1995b]).

Finally, we want to stress that, in this record-based model, covariance and con-

travariance naturally coexist. This is not apparent in the example above with equal

since all the branches of equal return the same type Bool. To see that the two

concepts coexist, imagine that instead of the method for equal we had a method

add. Then we would have objects of the following types:

2AddPoint s ((x: Int;

y: Int;

add: {tiddPoint -+ 2AddPoint)

))

3AddPoint ~ ((z: Int;

y: Int;

Z: Int;

add: {2AddPoint -+ 2AddPoint, 3AddPoint -+ 3AddPoint }

))

The various branches of the multimethod15 add in 3AddPoint are related in a co-

variant way, since the classes of their arguments determine the code to be executed.

5. CONCLUSION

With this article we hope to have contributed decisively to the debate about the

use of covariance and contravariance. We have tried to show that the two concepts

are not antagonistic, but that each has its own use: covariance for specialization

14This ~b~er~ati~n does not depend on the size or the depth of the hierarchy, and it is valid also

for n-ary methods More than two branches may be required only if we use multiple inheritance
15A ~Ultirnethod is a collection of methods (or branches). When a multimethod is applied to

argument objects, the appropriate method to execute is selected according to the type of one or

more of the arguments. Multimethods correspond to our overloaded functions.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995,

446 . Giuseppe Castagna

and contravariance for substitutivity. Also, we have tried to convey the idea that

the independence of the two concepts is not characteristic of a particular model but

is valid in general. The fact that covariance did not appear explicitly in the record-

based model was not caused by a defect of the model but rather by a deficiency of all

the calculi that used the model. In particular, they were not able to capture multiple

dispatching. Indeed, it is only when one deals with multiple dispatching that the

differences between covariance and contravariance become apparent. The use of

overloaded functions has allowed us to expose the covariance hidden in records.

As an aside, we have shown that the A&-calculus can be taken as the basic

calculus both of an overloading-based and of a record-based model. With it, we

not only obtain a more uniform vision of object-oriented type theories but, in the

case of the record-based approach, we also gain multiple dispatching, which is, we

believe, the solution to the typing of binary methods.

To end this note we give three “golden rules” that summarize our discussion.

The Golden Rules

(1) Do not use (left) covariance for arrow subtyping,

(2) Use covariance to override parameters that drive dynamic method selection.

(3) When overriding a binary (or n-ary) method, specify its behavior not only for

the actual class but also for its ancestors.

ACKNOWLEDGMENTS

I want to thank V&onique Benzaken who encouraged me to write this article and

Kathleen Milsted for her patient reading and many suggestions. Special thanks

to John Mitchell and to Kathleen Fisher whose revisions made these notes more

readable.

REFERENCES

APPLE COMPUTER INC 1992. Dylan: An Ob~ect-Onented Dynamzc Language. Eastern Research

and Technology, Apple Computer Inc., Cambridge, Mass,

BANCILHON, F,, DELOBEL, C., AND KANELLAKIS, P. (Eds.) 1992. Implementing an Object-

Ortented Database System: The Story of 02 Morgan Kaufmann, San Mateo, Cahf.

CARDELLI, L. 1988. A semantics of multiple inheritance Inf. Comput. 76, 138–164. A previous

version can be found in Semantws of Data Types Lecture Notes in Computer Science, vol.

173. Springer-Verlag, New York, 1984, pp. 51–67.

CARDELLI, L. AND MITCHELL, J. 1991. Operations on records Math. Struct. Comput. SCZ. 1, 1,

3–48.

CASTAGNA, G. 1995a. A meta-language for typed object-oriented languages Thwr. Comput.

SCZ. To be published. An extended abstract appears in Proceedings of the 13th C70nfevence

on the Foundations of Software Technology and Theoretical Computer Sctence, Lecture

Notes in Computer Science, vol. 761. Springer-Verlag, New York, 1993.

CASTAGNA, G. 1995b. A proposal for making 02 more type safe. Tech. Rep. LIENS-

95-4, LIENS, ParIs, France. Available by anonymous ftp from ftp.ens fr in file

/pub/dmi/users/castagna/02.dvi.Z.

CASTAGNA, G. 1994. Overloading, subtyping and late binding: Functional foundation of object-

oriented programming. Ph.D. thesis, University Paris 7, Paris, France. Appeared as LIENS

Tech. Rep.

CASTAGNA, G., GHELLI, G., AND LONGO, G. 1995. A calculus for overloaded functions with

subtyping, Jnf. Comput. 117, 1, 115–135.A preliminary version has been presented at the

ACM TransactIons on Programming Languages and Systems, Vol. 17, No. 3, May 1995,

Covariance and Contravariance . 447

1992 ACM Conference on LISP and Ftmctional Programming (San Francisco, June).

DEMICHIEL, L. AND GABRIEL, R. 1987. Common lisp object system overview. In Proceeding

of ECOOP ’87 European Conference on Ob]ect-Oriented Progmmming (Paris, France).

Lecture Notes in Computer Science, vol. 276. Springer-Verlag, Berlin, 151-170.

GHELLI, G. 1991. Astatic type system formessage passing. In Proceedings of 00PSLA ’91.
ACM, New York.

GOGUEN, J. AND MESEGUER, J. 1989. Order-sorted algebra I: Equational deduction for multiple

inheritance, overloading, exceptions and partial operations. Tech. Rep. SRI-CSL-89-1O,

Computer Science Laboratory, SRI International, Menlo Park, Calif. July.

GOLDBERG, A. AND ROBSON, D. 1983. Smalltalk-80: The Language and Its Implementation.

Addison-Wesley, Reading, Mass.

GUNTER, C.A. AND MITCHELL, J .C. 1994. Theoretwal Aspects of Ob]ect- Oriented Progmmming:

Types, Semantics, and Language Design. The MIT Press, Cambridge, Mass.

JOUANNAUD, J.-P., KIRCHNER, C., KIRCHNER, H., AND MEGRELW, A. 1992. OBJ: Programming

with equalities, subsorts, overloading and parametrization. J. Logzc Progmm. 12, 257–279.

LfiCLUSE, C., RICHARD, P., AND VfiLEZ, F. 1988.02, an object-oriented data model. In Pro-

ceedings of the ACM SIGMOD Conference (Chicago, 111.).ACM, New York.

MARTf-OLIET, N. AND MESEGUER, J. 1990. Inclusions and subtypes. Tech. Rep. SRI-CSL-90-16,

Computer Science Laboratory, SRI International, Menlo Park, Calif. Dec.

MEYER, B. 1991. ,%fleb The Language. Prentice-Hall, Englewood Cliffs, N.J.

PINSON, L. AND WIENER, R. 1992. Objective-C: Ob]ect-Oriented Progmmming Techniques.

Addison-Wesley, Reading, Mass.

RfiMY, D. 1989. Typechecking records and variants in a natural extension of ML. In the 16th

Annual ACM Symposium on the Principles of Progmmming Languages. ACM, New York.

SCHWARTZBACH, M. 1994. Developments in object-oriented type systems. Thtorial given at

POPL’94. Unpublished.

STROUSTRUP, B. 1986. ‘l’he C++ Progmmming Language. Addison-Wesley, Reading, Mass.

WAND) M. 1987. Complete type inference for simple objects. In the 2nd Annual Symposium on

Logic in Computer Science. IEEE Computer Society Press, Los Alamitos, Calif.

Received April 1994; revised January 1995; accepted February 1995

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 3, May 1995.

