
Strategy & Template Method

4-20-2004

Opening Discussion
● Quiz grades were good again, but this time I

know I was too lenient.
● Public inheritance is an is-a relationship.

Composition or private inheritance give has-
a relationship.

● Downcasting is bad for code maintainability,
expandability, and makes runtime errors of
things that could be syntax errors.

● Checked exceptions MUST be caught or
passed on. Therefore they should only be
used for recoverable errors.

Strategy
● With this pattern you define a family of

algorithms and abstract them so that they
are interchangeable.

● The design for this includes an interface for
the strategy, typically named after the
algorithm, and then various concrete
implementations of it.

● In addition, there is some context object that
keeps an instance of the strategy object and
uses it. The idea is that the context is doing
something that requires the strategy, but the
strategy should vary independently of it.

Example
● GoF uses the example of a Composition class

which is supposed to lay out some text or other
collection of items. Part of the work of the
composition class is decided where to put in
line breaks. Depending on the exact
application, different line break algorithms could
be used. Each one gets it's one concrete
implementation of a Compositor interface.

● You can imagine similar situations with pieces
of code that depend on sorts, layouts, or
selections. GeneralBlend in Java code.

Benefits and Drawbacks
● Using this pattern you implicitly create

families of algorithms than can lead to
greater reuse.

● Provides an alternative to subclassing the
entire context.

● It eliminates the conditionals you might
otherwise have when picking the algorithm
to use.

● Easier to choose between implementations.
● On the down side, the client must be aware

of the strategies.

More Drawbacks
● There can be overhead in context calling the

strategy, especially if the interface is make
more complex to handle more options.

● There are more objects around which can
lead to extra overhead. The use of the
Flyweight pattern can help relieve some of
this.

Template Method
● This pattern defines the skeleton of an

algorithm where some of the details are left
for subclasses to fill in or redefine.

● Basically a template method defines an
algorithm based on some abstract
operations.

● When this is done dynamically, the template
method will call virtual methods that are
given concrete implementations in
subclasses.

Example
● GoF uses the example of an application that

can open and create documents that we
have talked about before. In this case, the
method OpenDocument is a template
method. It calls abstract methods like
createDocument and read that are defined
by specific subclasses.

● The template method basically fixes the
order of calling other methods that will be
defined later.

Benefits and Drawbacks
● You have to be careful with the

documentation if you provided inherited
operations in the superclass that should be
overridden, but don't have to be.

● In C++ you might often to this with templates
instead of inheritance.

● In Java you do this with inheritance, but you
have to take very seriously the suggestion to
either prevent inheritance or document for it.

Progress Presentations
● Tom said that he wanted to present today. I'd

like to give a brief presentation on the
collision handling in the Java code. If anyone
else wants to show something quick to
supplement an earlier presentation feel free.

● I'm sending around sign-up sheets. I want to
meet with each of you for 30 minutes. You
should bring UML and printouts of your code
or at least bring UML and be able to quickly
tell me what files to print to see most of your
work.

