
Memento & Prototype

4-27-2004

Evaluations
● We need to do evaluations and since this is

the last regularly scheduled meeting of this
class we should do them today. Once they
are done we can start the normal class
material.

Opening Discussion
● MI mainly causes ambiguity, but more

people should have mentioned the diamond.
 What are the implications/solutions for that?

● Use templates when the functionality does
NOT change with the type. Basically, the
code for foo<int> and foo<TypeB> has to be
identical. Use inheritance otherwise. On a
more fundamental level, templates are static
and virtual functions are dynamic.

● Do you have any questions about the
reading for today?

Memento
● With this pattern we capture the internal

state of an object and externalize it so that it
can be restored to that state later.

● The idea is that there is some originator that
wants a client to be able to “remember” its
current state, but doesn't want to break
encapsulation. It gives the client a memento
that has no meaning to the client, but which
stores the information needed by the
originator.

● This is a place where downcasts might be
required.

Example
● An example of this would be an undo

mechanism where we don't want the undo to
have internal information about the things
being altered. We talked about undo before
with command. Memento can help out to
“fortify” the cases where simply undoing an
alteration doesn't always return to the
original state.

● GoF uses an example of a drawing program
with connections between boxes. The
connection solver is the originator.

Benefits and Drawbacks
● Helps to maintain encapsulation.
● Keeps the originator simple, it doesn't have

to remember older states.
● It can get expensive as the mementos might

be large and you might keep quite a few
around.

● In some languages it is hard to keep the
contents of the memento encapsulated.

Prototype
● This is a creational pattern where new

objects are constructed as copies of some
prototype object.

● The client has a reference to a prototype
object. Prototype is an interface and it
doesn't know the exact type. The interface
has a clone method that is invoked when we
want a new object. That returns an object of
the proper subtype.

Example
● GoF uses the example of a graphical editor

that is part of a general framework. In one
application this framework is used for a
music editor. There are GraphicTools in the
framework that are used to create different
GraphicObjects. The GraphicTool class
though doesn't know about the music stuff at
all. It just clones a prototype.

● Cloning in Java is an example of this. Some
languages (e.g. SELF and Cecil) use
prototyping for almost everything.

Benefits and Drawbacks
● The primary benefit is that the client code

doesn't have to know the exact type that it is
creating.

● It makes it easier to add or remove products
at runtime because the creation is
dynamically bound.

● You can effectively create new types by
composition and prototype off of those.

● You do a lot less subclassing than with
Factory Method.

● You can configure classes dynamically.
● All subtypes must implement clone.

Progress Reports
● Mike is going to give his main progress

report and anyone else who has something
to show briefly should do so.

● 1000 lines rule.
● Demonstrations start at 5:30pm on the 10th

of May.

