
Singleton and Bridge

2-10-2004

Opening Discussion

● Overriding equals in a class hierarchy
typically breaks symmetry and transitivity.

● If two objects are equal, their hash codes
have to be equal.

● delete vs. delete[]. Both deallocate all the
memory in that block. But only the array
version calls all the destructors.

● Overload new and delete to use a memory
pool with a free list.

● Do you have any questions about the
readings for today's quiz?

Singleton

● This is another creational pattern. This time
the idea is that you have a class where you
want only one single instance of it to be
instantiated.

● Typically when this pattern is applied there is
also a global way of getting hold of that
single object. This can be done by having a
static method in the class.

● Another advantage is that the static method
will return a pointer/reference so it is easy to
have it return a subtype.

Example

● There are many examples of this that could
be used. Things like file systems or memory
managers where only one should be
present. I Java you have classes like the
Toolkit class that can give information about
the system.

● As something of a general rule you call the
method that gets the singleton “instance”.
Obviously this doesn't have to be followed.
Also make constructors non-public to
enforce the singleton aspect.

Benefits and Drawbacks

● Not only can you easily return a subtype
instead of the declared type, you can also
decide later there should be 2, 3, or more of
that type with no alterations other than to the
static method.

● It's better than having a single global
because the class encapsulates the
instance and doesn't let other parts of code
mess it up.

● Better than a utility class because of
flexibility.

Bridge

● This pattern looks somewhat similar to
Adapter, but is more complex and serves a
somewhat different role.

● It is supposed to decouple an abstraction
from its implementation so that both can be
varied independently.

● This is done by putting the abstraction and
the implementation in separate inheritance
hierarchies instead of having them share
one.

Example

● Imagine having different window
abstractions and having different windowing
implementations they can exist on.

● The abstraction interface (Window) will
define broad functions while the
implementation interface will have very
specific, primitive functions.

● Then there can be implementations of both
of these interfaces that do what is required
for certain situations.

● Could be used with abstract factory.

Benefits and Drawbacks

● Completely decouples the interface and
implementation to the point that the
implementation can be changed at runtime
for a single object.

● It is easier to extend the two separate
hierarchies.

● Gives better hiding of implementation
details. For example you could share
implementation objects, but the client will
never know.

Progress Reports

● No one agreed to talk today in advance. Is
there anyone who has come up with
anything significant during the last week that
wants to talk about it a bit?

