
Decorator and Composite

2-17-2004

Opening Discussion
● Inheritance not involved in the first question.

 Also the bigger problem is dangling
pointers, not memory leaks. Only a problem
because things are done “by value”.

● Page 63 in the Java book lists the things
you need to do/should do to make a class
immutable. Immutable objects are generally
safer and sharing often reduces memory
usage.

● Inheritance breaks encapsulation.
● Do you have any questions on the reading

for today?

Decorator

● This pattern lets you attach extra
responsibilities to an object dynamically.

● The way it works is that you wrap an existing
object inside of another object that will pass
on calls to the existing object, but also has
extra processing or extra abilities.

● This pattern is also called a wrapper
because that is basically what the decorator
does.

● You have an abstract base type and all
decorations inherit from it.

Example

● The Java I/O libraries are built on this
pattern. Things like BufferedInputStream
and DataInputStream decorate other
InputStreams.

● The GoF book uses an example from a
graphics program where things like
scrollbars and borders are added as
decorators on components that go into the
graphics.

Benefits and Drawbacks

● This is more flexible than just inheriting from
a class to add extra features. Allows easier
mix and match.

● It's easy to create and add new decorator
types later so you don't have to think of all of
them to start with.

● It can cause problems with object identity
because an object wrapped in a decorator
isn't that object itself.

● This creates systems with lots of little
objects that can be hard to understand.

Composite

● This pattern allows for the composing of
large objects from smaller objects in a tree-
like structure. The main benefit being that
all the objects are treated the same way.

● We get this by having all of the objects
inherit from the same interface/superclass.
This way all that we see is a tree of nodes
and it doesn't matter that each node might
actually be of a different type, running
different code.

Example

● Graphics hold great examples of the
Composite pattern. I have used one in my
PAD2 class that we can look at. The idea
being that we have a tree of some Node
type, but it is really made from many
subtypes.

● Scene graphics in 3D graphics are similar.
The GoF book uses an example from
typesetting or word processing where a tree
represents the document and nodes can be
text, drawings, etc.

Benefits and Drawbacks

● Allows you to build complex structures with a
simple interface for the client.

● Makes it very easy to add new types of
components, simply make a new class that
extends the interface.

● The main drawback is that the interface will
typically be fairly restrictive and you have to
use dynamic type information if you want
specific information on the a particular
subtype.

Progress Reports

● We have a few people who wanted to
present the progress that they have made
and their designs today.

● As a side note, I would like to point out that
when parts of code seem to be running too
slow, it doesn't mean you have to reduce
functionality. Sometimes you simply need to
better understand what your code is doing
and just think of how to do it better.

● City people want to present. Who else?

