
Builder and Facade

2-24-2004

Opening Discussion

● Static inner classes have less memory
overhead. They can't access “parent”
object.

● Don't call overridable methods (especially
from constructors). Prohibit inheritance with
final or private constructors. C++ nuances.

● Virtual destructors make sure you call the
destructor on the subclass.

● Do you have any questions about the
readings for today before we take the quiz?

Builder

● This is a creational pattern that separates
the construction of a complex object from its
representation so the same construction
process can be used for many different
representations.

● Obviously we do this when we want to vary
the representations that we have for a
certain piece of data, but we can find a
common interface for how it is built.

● The thing calling the builder is referred to as
the director. It produces a product.

Example

● GoF uses the example of reading in an RTF
document. You can have one parser that
reads in tokens and passes those to a
builder interface. Each implementation of
the builder interface builds a different
representation of the document.

● The advantage is that you only write one
parser and it work for all the representations
that you might want to add. In this example,
some of them ignore different tokens and
some handle the tokens differently.

Benefits and Drawbacks

● You can easy vary the internal
representation of the product.

● It encapsulates the code for construction
and representation. This way the client code
doesn't care about it.

● Gives fine grained control over the
construction process. This is opposed to
most other creational patterns where things
are created in one fell swoop. Here the
product is built up of a series of calls to the
builder as orchestrated by the director.

Facade

● This structural pattern provides a uniform
interface to multiple other interfaces in a
subsystem. The intention is to provide a
higher-level interface that is easier to use.

● Basically the facade is a single class with a
number of functions that pass straight
through to other functions. The idea is just
to consolidate things to help out the user.

● Of course, the user doesn't even have to
know that he/she is working with a facade.

Example

● GoF uses the example of a compiler that
has many parts (scanner, parser, etc.) but
where most applications don't need to know
about all the parts. They can instead with
with a facade and the life of the developer is
made simpler.

● If some aspect of the program needs the
power, it can go in and work with the things
behind the facade, but that is optional.

● This especially helps when patterns create
systems with lots of little classes.

Benefits and Drawbacks

● It shields the user from the details of the
subsystem and makes life easier.

● It provides a weak coupling between the
client code and in internal representation
making it easier to change what is
happening behind the facade.

● Doesn't technically prohibit clients from
using the pieces of the subsystem, but doing
so will remove some of the other benefits.

Progress Reports

● Who are we going to have present today?
● Remember, I want to see UML that helps me

to understand how your design and how the
parts of what you are doing work together.

Next Week

● Note that next week I'll be gone MTW. You
have no class on Tuesday, but I believe that
there is a speaker at this time and you
should probably take the opportunity to hear
him.

● Obviously, you should still be working on the
project while I'm gone. I should have some
Internet access, but I don't know how good it
will be.

