
Flyweight and Proxy

3-9-2004

Opening Discussion
● Const objects/references requirer const

methods.
● Interfaces should be minimal yet complete.
● Unions in C were a feeble (and unsafe) way

of providing polymorphism.
● Do you have any questions about the

reading for today?

Flyweight
● The objective of this pattern is to allow the

sharing of objects to efficiently allow
systems that would otherwise require too
many objects.

● In order for this to work well, the shared
objects need to be identical. You can
sometimes share only some of the data
between objects and pass in differences.

● You should note that immutable objects can
make this safer and a bit more flexible in
some instances.

Example
● GoF uses characters in a text document as

an example. Without flyweight these can't
be objects. With it you have a table/pool of
the characters and then reference them.

● You could have a different table for different
fonts though personally I would consider that
as something that could be passed in.
Otherwise changing the font on a paragraph
is a somewhat time consuming process of
redirecting many pointers.

Benefits and Drawbacks
● Using the flyweight can have overhead costs

to speed because you have to look things
up. These are offset by memory savings. If
creating objects is costly the speed might
not really be hurt either.

● How much you save depends on how many
objects you need and how much sharing
happens. Big systems can gain more.

● This is often combined with Composite to
create a tree like structure.

Proxy
● With this pattern you provide a placeholder

or surrogate for a given object that gives you
remote/indirect access to it.

● The primary use of this is when the creation
of certain objects is expensive, we don't
want to create them unless they are needed
and only when they are needed. Instead we
create a proxy object that can answer simple
questions about the full object and only
instantiates the full object when required.

Example
● GoF uses the example of an image in a document.

These can be expensive to load and store so the
proxy only gets enough information for the size, not
the full raster. The full raster is created and
remembered only when it is viewed.

● This pattern is very similar in many ways to how
dynamic loading can happen in the project. We keep
a proxy object for things that aren't currently viewed
and those objects load when needed.

● RMI also works a a Proxy.
● In C++ the auto_ptr class is a proxy for pointers.

Similar things can be done that allow reference
counting.

Benefits and Drawbacks
● The extra level of indirection for a Proxy

enables numerous types of enhancements
depending on the type of proxy object.
– Remote proxy
– Virtual proxy
– Protection proxy
– Smart reference

● A copy-on-write proxy allows sharing of large
objects as long as they aren't changed. It
includes reference counting. The large
object is only copied when modified.

Progress Presentation
● Is there anyone who wants to report on their

progress in the project?
● After Spring Break this will have to go into

full swing as there are quite a few of you
who haven't presented yet.

● You should all have things to hand me
today.

