
Visitor

3-30-2004

Opening Discussion
● Make defensive copies of mutable objects to

defend your copy. This isn't needed with
immutable objects since they can't be
changed.

● Don't overload with ambiguous types. If you
have two versions that take subtype and
supertype, the version is picked statically.
This isn't likes overriding which works
dynamically.

● Return an object not a reference when the
method creates an object.

More Discussion
● There are two main cases where ambiguity

can be created. One is when you overload
with types that can be reached equally well
from implicit conversions. The other is with
multiple inheritance from supertypes that
have some name in common.

● Do you have any questions about the
reading for today?

Visitor
● This pattern provides a way to perform an

operation on all of the elements of some
structure. This allows you to change the
operation without having to alter the code for
the structure itself.

● To do this we define a Visitor interface with a
method that is called when an object is
“visited” that method also accepts the object
being visited as an argument.

● The ConcreteVisitor can collect information,
or might be like a simple functor.

Example
● GoF uses an example of a compiler where

the code is compiled to a meta-format and
then we pass through that format several
times doing different things.

● Without visitor, we need a different method
for each type of pass we want to do. That
adds a new method to every type in our
meta-format. With visitor we just create a
new ConcreteVisitor.

● More familiar to you would be having a
binary tree and wanting to do different things
to the elements.

Benefits and Drawbacks
● The primary benefit is that it is very easy to

add new operations. It is also easy to
change that functionality for a single visitor
because it sits in a single visitor class.

● This also keeps things related to different
operations separated into different visitors.

● When you want to add a new type to the
structure, that can be hard. This is because
different visitors might handle each subtype
differently.

More Benefits and Drawbacks
● Visitors can work across class hierarchies.

An iterator can't do this. The visitor can also
be more efficient than an iterator in some
cases.

● The visitor can accumulate state where data
would have to be passed through if the
methods were part of the objects.

● Visitors often require you to break
encapsulation in some way.

Progress Presentations
● Bobby and Pete are going to present today.

That leave 5 people who haven't presented
and there are some people who might want
to go again. We need two people going
every day from here out.

