

Build Management & Strategy

9-14-2011

Opening Discussion

 Do you have any questions about the quiz?
 Presentations should go beyond the book.

Assume everyone has done the reading.

Build Management

 To make life easy you want to use a build
manager.

 This lets you specify different things that can be
done and how to do them.

 Helps make sure you don't get lazy and skip
steps.

Options

 make
 The original and still broadly in use with C/C++.

 Ant
 Created specifically for Java.

 Maven
 Newer than Ant and gaining traction.

 SBT
 Created for use with Scala.

 Many others.

Build Description

 make
 Target : dependencies

 Commands tabbed in

 Ant (http://ant.apache.org/manual/)
 Uses an XML document.
 <project name=”...” default=”...” basedir=”...”>

 <property …/>
 <path ...>...</path>
 <target ...>...</target>

 </project>

http://ant.apache.org/manual/

TDD with Builds

 You can follow the standard steps of TDD with
build tools.

 Make a test list and check things off.
 The testing is running the build tool to see if

everything works.

Separate Out Test Tree

 One significant recommendation from the book
is to put tests in a separate tree from the other
source.

 The primary reason for this is that some tools,
like javadoc, should not be run on test code.

Design Patterns

 These are approaches to solving problems that
come up repeatedly in programming.

 Fundamental rule: Abstract that which varies.

Motivating the Strategy Pattern

 Book uses the pay station with different towns.
 My simulations use different population types,

different particle types, different force types.
 Solutions

 Copy code
 Parameter and switch
 Inheritance with separate subtypes
 Composition of object that encapsulates rules

Methods of Change

 Change by Modification
 To make a change in behavior you have to change

the existing code.

 Change by Addition
 To make a change in behavior you add additional

code.

Delegation

 Giving parts of a task off to some other
object/type.

 The new object/type has responsibility for
handling a small piece of the whole problem.

Strategy Pattern

 The compositional approach is often called the
Strategy Pattern.

 The idea is that you want to abstract the
strategy taken for some part of the problem.

 That part of the problem is delegated to another
object whose exact type can be varied easily
without changing other parts of the code.

End Note

 Book uses interface and different
implementations for different strategies. This is
the Java style.

 In C++ this can be done with templates instead.
 This is part of the flexibility of patterns.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

