

Refactoring, Patterns, and
Coupling

9-21-2011

Opening Discussion

 What questions do you have about things?
 Have you been writing any cool code?
 Have you seen anything cool in the news?
 Did you do the curriculum discussion?
 What do you think AI based automation is going

to do to the workforce in the coming decade?

Refactoring in TDD

 Rely on your existing tests.
 This is where the courage of TDD comes into play.
 Unless you have Eclipse and do auto-refactoring. :)

 Still take small steps and runs tests a lot
 Expect to go from fail to pass.

Levels of Tests

 Unit Test
 Tests functionality of a single unit of software.

 Integration Test
 Test interactions between units.

 System Test
 Test that the whole system meets specified

requirements.

Test Suites

 Unit test systems allow you to define test
suites.

 For JUnit use this:
 @RunWith(Suite.class)
 @Suite.SuiteClasses({Class1.class,Class2.class,...)

Design Patterns

 Christopher Alexander, Notes on the Synthesis
of Form

 Purpose
 Control complexity
 Improve speed
 Communication

Definitions

 Gamma et al.
 Patterns are descriptions of communicating objects

and classes that are customized to solve a general
design problem in a particular context.

 Beck et al.
 A design pattern is a particular prose form of

recording design information such the designs
which have worked well in the past can be applied
again in similar situations in the future.

Coupling

 A measure of how strongly dependent on
software unit is on others.

 Dependencies are produced by any type of
usage.

 You typically want lower/weaker coupling.

Cohesion

 This is a measure of how focused a unit of
software is.

 You want high cohesion. Things in a single unit
should be closely related to one another.

 Applies at many different “unit” levels.

Law of Demeter

 Do not collaborate with indirect objects.
 Also called “Don't talk to Strangers”.
 Implementation, only call methods on things

you have direct access to.
 When taken a fit too far, this can lead to an

opposite smell.

Closing Comments

 Can you see how UML helps for system design
after seeing this material?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

