

Refactoring, Patterns, and
Coupling

9-21-2011

Opening Discussion

 What questions do you have about things?
 Have you been writing any cool code?
 Have you seen anything cool in the news?
 Did you do the curriculum discussion?
 What do you think AI based automation is going

to do to the workforce in the coming decade?

Refactoring in TDD

 Rely on your existing tests.
 This is where the courage of TDD comes into play.
 Unless you have Eclipse and do auto-refactoring. :)

 Still take small steps and runs tests a lot
 Expect to go from fail to pass.

Levels of Tests

 Unit Test
 Tests functionality of a single unit of software.

 Integration Test
 Test interactions between units.

 System Test
 Test that the whole system meets specified

requirements.

Test Suites

 Unit test systems allow you to define test
suites.

 For JUnit use this:
 @RunWith(Suite.class)
 @Suite.SuiteClasses({Class1.class,Class2.class,...)

Design Patterns

 Christopher Alexander, Notes on the Synthesis
of Form

 Purpose
 Control complexity
 Improve speed
 Communication

Definitions

 Gamma et al.
 Patterns are descriptions of communicating objects

and classes that are customized to solve a general
design problem in a particular context.

 Beck et al.
 A design pattern is a particular prose form of

recording design information such the designs
which have worked well in the past can be applied
again in similar situations in the future.

Coupling

 A measure of how strongly dependent on
software unit is on others.

 Dependencies are produced by any type of
usage.

 You typically want lower/weaker coupling.

Cohesion

 This is a measure of how focused a unit of
software is.

 You want high cohesion. Things in a single unit
should be closely related to one another.

 Applies at many different “unit” levels.

Law of Demeter

 Do not collaborate with indirect objects.
 Also called “Don't talk to Strangers”.
 Implementation, only call methods on things

you have direct access to.
 When taken a fit too far, this can lead to an

opposite smell.

Closing Comments

 Can you see how UML helps for system design
after seeing this material?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

