
Principles of Programming
Languages

Dr. Mark C. Lewis
Trinity University

Fall 2004

Opening Discussion

● Have you read the first chapter?
● Why are you taking this course? What do you

think we are going to learn about? What do you
want to learn about? How would you characterize
this course?

Course Web Page

● The web page for this course is at
www.cs.trinity.edu/~mlewis/CSCI3368-F04

● This has the syllabus and a link to a schedule.
The lecture notes will be linked to from the
schedule before class every day.

● We meet here every TR unless otherwise marked
on the schedule.

● Text: “Concepts of Programming Languages” by
Sebesta. You'll read the whole thing this
semester.

Course Description

● This course probably isn't very well understood in
the department. The way it is taught has varied over
the years and from college to college.

● This is not a class where you learn a whole bunch of
different languages. A shallow knowledge of 20
languages doesn't benefit you much.

● This class is about the fundamental concepts that go
into programming languages. Understanding those
allows you to more quickly learn new languages and
makes you better at the ones you already know.

Basic Course Outline

● The schedule gives you an idea of what we will be
covering over the course of the semester.
Basically we are going straight through the book.

● You will be evaluated on four areas.
– Assignments : 25%
– Tests : 20%
– Class Participation : 25%
– Final Project : 30%

Assignments

● Each chapter has a set of problems and
programming problems at the end. You will need
to pick 4 of these to do and hand in to me the class
period after we finish each of the first 15 chapters.

● Originality in selecting problems is rewarded (+10
points if you are the only person to do a problem)
and lack thereof is penalized (-10 points if more
than 1/3rd of the class does that problem).

● You can work with others, but must turn in your
own work.

Tests

● There will be two tests, a midterm and a final.
Each counts for 10% of your grade. They are both
intended to be roughly an hour long.

● These aren't meant to kill you and notice how little
they count towards your grade. However, they are
my way of checking that you understand the
concepts independent of your other classmates.

Class Participation

● It might seem odd having 25% of your grade be
class participation, but for this class I want you to
be engaged in significant discussions instead of
just listening to me lecture.

● You must do the readings before you arrive and
show up with two questions/comments about
material in the reading. The quality of those
comments will go into calculating your class
participation grade for each class along with what
you actually say in class.

Final Project

● The single largest part of your grade will come from a
project that is due during the finals period. The
schedule lists important “early” due dates for the
project.

● For this project you can choose to do almost anything
significant related to programming languages.
– Design your own language and argue for choices made in

the design.
– Detailed analysis of existing languages.
– Active research in PL.

Programming Domains

● Coding can be broken into different domains.
– Scientific Applications
– Business Applications
– Artificial Intelligence
– Systems Programming
– Scripting Languages
– Special-Purpose Languages

● What languages do you know? What domain are
they in? What problems do you use them for?

How We Evaluate Languages

● Readability
– Simplicity/orthagonality, Control structures, Data types

& structures, Syntax design
● Writability

– Above plus: Support for abstraction, Expressivity
● Reliability

– Above plus: Type checking, Exception handling,
Restricted aliasing

● Cost

Influences

● Machine architecture
– This has had a HUGE influence on the design of

programming languages? Why? How?
● A language is also impacted by the type of

methodologies it allows. Alternately we might say
by the paradigms that it supports.
– Imperative
– Functional
– Logic
– Object-oriented

Trade-offs

● The evaluation criteria we use often are at odds.
● What are some examples of how they are at odds?

How do these things manifest in the languages
that you know? Which types of trade-offs do you
think take priority? What other variables matter
in the trade-offs?

Implementation Methods

● There are three main ways of implementing a
language
– Compiled
– Pure Interpreted
– Hybrid

● Name some languages that do each. What are the
trade-offs of each?

Programming Environments

● Some of the biggest advances in programming
haven't actually dealt directly with the languages.
Instead, they have dealt with the way that we write
those languages.

● What is your favorite programming environment?
Why do you like it? What are the strengths of it?

Numerical Code Demonstration

● I have a small code that does a numerical
integration of bodies under the influence of
gravity. It puts a central “star” down with 100
smaller bodies around it. I wrote in it Java and
ported it to C++ to do some speed tests.

● Let's look at how the two compare.

