

Defining Semantics

9-9-2004

Opening Discussion

What did we talk about last class?

Your Discussion Questions

Let's look over your discussion questions. We'll start by doing the last few from last class.

Static Semantics

- Defining the rules that can't be put in BNF or are inefficient to do that way.
 - Attribute grammars symbols can have attributes with them, productions can have attribute computation functions, and predicate functions.
 - Inherited attributes are passed down, synthesized attributes are passed back up, and intrinsic attributes come from something like the lookup table and only impact the leaves.
 - For a parse to be correct, all of the predicates have to be true for the computed attributes.

Dynamic Semantics

Defining the meaning of statements.

- Operational semantics use a simpler language.
- Axiomatic semantics proving programs correct with logic. Go back through the program finding weakest preconditions.
- Denotational semantics defining what programs mean through math.