
Chain of Responsibility and
Iterator

9-13-2005

Opening Discussion

● Do you have any questions about the items
that you read for today before we start the
quiz?

Behavioral Patterns

● The third major type of pattern is that of
behavior patterns. These patterns deal with
algorithms and the communication between
objects.

● These patterns typically do things like make it
easy to switch what algorithm is used to do
something or to abstract the way that we get
information from a class so the
implementation of that class can be easily
changed.

● Remember, abstract that which varies.

Chain of Responsibility

● This pattern is something like a daisy chain in
software. You use it to avoid coupling the
sender to the receiver when a request is
being made.

● We have a class of objects that can receive
requests that are linked in a list. When an
object receives a request it can either handle
it, or pass it on to the next in the chain.

● The client object makes a request of the first
in the chain, typically the most specific.

Example

● One example of this would be in event
handling where an event might pertain to one
of several objects.

● For example, a button in a panel, in a
window. Some requests the button can
handle, others it passes on to the panel. If
the panel can't handle it, it will pass it all the
way out to the window and the full
application.

● The old Java event model was built
something like this.

Benefits and Drawbacks
● The primary benefit of this pattern is that it

provides lose coupling between the sender
and the receiver.

● It also makes it very easy to add a new
potential receiver for a message or new ways
a message can be received. All one must do
is add a new object to the list.

● The one real drawback is that there is no way
to be sure that anyone handled it. In some
applications this doesn't matter, but if the
message must be dealt with then this pattern
might not be ideal.

Iterator
● This is a pattern you should all be somewhat

familiar with. It provides a generic way to
sequentially examine the elements of
different types of containers.

● The idea is that iterators adhere to a certain
interface and each container class has one
or more concrete iterator implementations for
it.

● Outside code can then run through the
contained objects sequentially without
knowing anything about the structure of the
container if it has the required interface.

Example

● This pattern probably doesn't need one, but
imagine any set of collection types and code
that should be able to traverse the elements
of the collection regardless of its type.

● For example, we could store things in a
linked list or a binary tree. As long as they
can provide an Iterator, code can traverse
either without knowing what type it has.

● You could also easily make Iterators for
forward, backward, in-order, pre-order, post-
order, etc.

Benefits and Drawbacks

● Can have many different types of iterators on
a container without complicating the
container interface too much.

● Keeps the interface of the container simpler
in general.

● Allows for multiple traversals of the container
to be in progress at once. This can be
helpful in many situations, but is essential if
the application is multi-threaded.

Progress Report

● I'd like to get a quick update from each of
you on what they are doing and what
progress you have made.

A Spherical World

● Here are some
images showing
hierarchical,
dynamic loading in
a spherical world.

Multiple Viewers

● These shots have 2 and 100 viewers.

