
Builder and Facade

10-4-2005

Opening Discussion

● Static inner classes have less memory
overhead. They can't access “parent” object.
 Qualified this typically implicit.

● Don't call overridable methods (especially
from constructors). Prohibit inheritance with
final or private constructors.

● auto-ptr always called delete (not delete[], so
you can't use it with arrays.

● Do you have any questions about the
readings for today before we take the quiz?

Builder

● This is a creational pattern that separates the
construction of a complex object from its
representation so the same construction
process can be used for many different
representations.

● Obviously we do this when we want to vary
the representations that we have for a certain
piece of data, but we can find a common
interface for how it is built.

● The thing calling the builder is referred to as
the director. It produces a product.

Example

● GoF uses the example of reading in an RTF
document. You can have one parser that
reads in tokens and passes those to a builder
interface. Each implementation of the builder
interface builds a different representation of
the document.

● The advantage is that you only write one
parser and it work for all the representations
that you might want to add. In this example,
some of them ignore different tokens and
some handle the tokens differently.

Benefits and Drawbacks

● You can easy vary the internal representation
of the product.

● It encapsulates the code for construction and
representation. This way the client code
doesn't care about it.

● Gives fine grained control over the
construction process. This is opposed to
most other creational patterns where things
are created in one fell swoop. Here the
product is built up of a series of calls to the
builder as orchestrated by the director.

Facade

● This structural pattern provides a uniform
interface to multiple other interfaces in a
subsystem. The intention is to provide a
higher-level interface that is easier to use.

● Basically the facade is a single class with a
number of functions that pass straight
through to other functions. The idea is just to
consolidate things to help out the user.

● Of course, the user doesn't even have to
know that he/she is working with a facade.

Example

● GoF uses the example of a compiler that has
many parts (scanner, parser, etc.) but where
most applications don't need to know about
all the parts. They can instead with with a
facade and the life of the developer is made
simpler.

● If some aspect of the program needs the
power, it can go in and work with the things
behind the facade, but that is optional.

● This especially helps when patterns create
systems with lots of little classes.

Benefits and Drawbacks

● It shields the user from the details of the
subsystem and makes life easier.

● It provides a weak coupling between the
client code and in internal representation
making it easier to change what is happening
behind the facade.

● Doesn't technically prohibit clients from using
the pieces of the subsystem, but doing so will
remove some of the other benefits.

Progress Reports

● Who are we going to have present today?
● Remember, I want to see UML that helps me

to understand how your design and how the
parts of what you are doing work together.

