
Observer & State

11-7-2007

Opening Discussion
● Do you have any questions about the reading

for today?

Observer
● This behavioral pattern is used so that when

the state of one object changes, numerous
other objects can be notified of the change.

● The design for this includes an abstract
Subject which can be observed, as well as
multiple ConcreteSubjects and an Observer
interface as well as ConcreteObservers.

● The Subjects allow Observers to be added
and removed. The Observers simply have
update methods.

Example
● GoF uses the example of several graphical

objects that are linked to some data. For
example, a spreadsheet, a bar graph, and a
pie chart. When the data changes, all those
observers should be updated.

● In Java, the GUI event listeners are all
Observers. Just with slightly different
terminology. The Listeners get called when
something happens in the component that
they are listening to.

Benefits and Drawbacks
● This pattern allows you to reuse Subjects

and Observers independently.
● It provides an abstract coupling between the

two which makes for a loose coupling
between concrete implementations.

● Notifications are broadcast to all Observers.
This allows flexibility with adding and
removing the Observers.

● There are sometimes unexpected costs
though. You have to be careful how often to
alter a Subject if it has many listeners.

State
● This pattern allows an object to alter its

behaviors when its internal state changes. In
effect, it can appear to change class.

● For this pattern we have some type of
Context class which is what the outside world
sees. This class keeps a reference to a
State object. The State interface has the
methods that will vary depending on the
state. We create a different subtype for each
state. When the state of the context
changes, we use a different State subtype.

Example
● GoF uses the example of a TCP connection.

This type of object can have different states
and depending on the state, it will behave
differently when the use calls open or close.

● I have used this in my SwiftVis program
when I have something like an enum where
each option changes functionality. For
examples, I have a filter that does coordinate
conversions. The state indicates what type
of conversion it does.

Benefits and Drawbacks
● This pattern localizes the behaviors for each

state. This helps in two ways. First, it makes
the code easier to edit and can make adding
new states easier. Seconds, it prevents you
from messing it up by having methods not
properly check the state.

● This pattern makes state transitions very
explicit and simple. All you do is make the
state variable point to a new subtype of
State.

● State objects can be shared (Flyweight).

Progress Reports
● Does anyone want to make a presentation of

what they have done recently?

