
Visitor and Proxy

10-24-2007

Opening Discussion
● Do you have any questions about the reading

for today?

Visitor
● This pattern provides a way to perform an

operation on all of the elements of some
structure. This allows you to change the
operation without having to alter the code for
the structure itself.

● To do this we define a Visitor interface with a
method that is called when an object is
“visited” that method also accepts the object
being visited as an argument.

● The ConcreteVisitor can collect information,
or might be like a simple functor.

Example
● GoF uses an example of a compiler where

the code is compiled to a meta-format and
then we pass through that format several
times doing different things.

● Without visitor, we need a different method
for each type of pass we want to do. That
adds a new method to every type in our
meta-format. With visitor we just create a
new ConcreteVisitor.

● More familiar to you would be having a binary
tree and wanting to do different things to the
elements.

Benefits and Drawbacks
● The primary benefit is that it is very easy to

add new operations. It is also easy to change
that functionality for a single visitor because it
sits in a single visitor class.

● This also keeps things related to different
operations separated into different visitors.

● When you want to add a new type to the
structure, that can be hard. This is because
different visitors might handle each subtype
differently.

More Benefits and Drawbacks
● Visitors can work across class hierarchies.

An iterator can't do this. The visitor can also
be more efficient than an iterator in some
cases.

● The visitor can accumulate state where data
would have to be passed through if the
methods were part of the objects.

● Visitors often require you to break
encapsulation in some way.

Proxy
● With this pattern you provide a placeholder or

surrogate for a given object that gives you
remote/indirect access to it.

● The primary use of this is when the creation
of certain objects is expensive, we don't want
to create them unless they are needed and
only when they are needed. Instead we
create a proxy object that can answer simple
questions about the full object and only
instantiates the full object when required.

Example
● GoF uses the example of an image in a document.

These can be expensive to load and store so the
proxy only gets enough information for the size, not
the full raster. The full raster is created and
remembered only when it is viewed.

● This pattern is very similar in many ways to how
dynamic loading can happen in the project. We
keep a proxy object for things that aren't currently
viewed and those objects load when needed.

● RMI also works a a Proxy.
● In C++ the auto_ptr class is a proxy for pointers.

Similar things can be done that allow reference
counting.

Benefits and Drawbacks
● The extra level of indirection for a Proxy

enables numerous types of enhancements
depending on the type of proxy object.
– Remote proxy
– Virtual proxy
– Protection proxy
– Smart reference

● A copy-on-write proxy allows sharing of large
objects as long as they aren't changed. It
includes reference counting. The large object
is only copied when modified.

Progress Presentations
● Does anyone want to present anything this

week for progress on the project?
● It is critical to understand that sometimes you

just have to pick a way to do something and
do it.

