
Abstract Factory & Adapter

9/9/2009

Opening Discussion

● Do you have any quick questions about the
readings before we take the quiz?

● What progress have you made on the project
in the first week?

● What is a virtual method?

Some Principles of Design
Patterns

● Abstract that which varies.
– If there is something that could change in your

program, you should abstract it so that different
implementations can easily be added.

● Program to an Interface, not an
Implementation.
– Also, inherit from interfaces, not

implementations.
● Prefer Composition to Inheritance

– Only use inheritance when you really want
subtyping. For code reuse and data sharing,
stick with composition instead.

Creational Patterns

● Constructors can not be abstracted. This
leads to a strong need to abstract the
process of creating new items.

● The general idea of these patterns is that
you have a normal method that returns a
type that serves as the supertype for a
number of other types.

● This hides not only the exact type that is
created, but how it is created, and what data
it is created with. All those things can be
varied dynamically or statically.

Abstract Factory

● Provides an interface for creating families of
related or dependent objects without
specifying their concrete classes.

● You have an interface for the abstract factory
as well as interfaces for all of the types that it
might create.

● This can be especially helpful for dealing
with families of objects that need to be
created together.

● The main drawback is that it is difficult to
extend it to create new types of products.

Example

● Having a GUI with different look-and-feels is
a place where you would use an abstract
factory.

● The factory interface can create any widget
type (button, text field, scrollbar, etc.). You
have a different concrete implementation for
each look-and-feel.

● You also have an interface for each type of
widget and concrete types for each look-and-
feel.

Structural Patterns

● As the name implies, these patterns deal
with how classes and objects are composed
together to form larger structures.

● Structural class patterns combine
classes/interfaces through inheritance.

● Structural object patterns give ways to
compose objects to arrive at new
functionality. These allow the composition to
be changed at runtime.

Adapter

● An adapter converts the interface of existing
code to another interface that a client
expects.

● This can be done as a class pattern by
inheriting the existing class and adding
methods.

● A more flexible, and advisable, approach is
to use composition and forward the requests
to the object. This also allows you to have a
single adapter for multiple classes.

Example

● The people doing graphics for the project
could use this pattern.

● In this case they are working with something
like Java3D. The interface for the graphics
that others see won't be Java3D. Some
parts of Java3D will need to be wrapped up
(an adapter) so that they fit the interface that
is generally used.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

