
Singleton and Bridge

9/23/2009

Opening Discussion

● You override hashCode to make sure equal
objects return the same value.

● Do you have any questions about the
readings for today's quiz?

Singleton

● This is another creational pattern. This time
the idea is that you have a class where you
want only one single instance of it to be
instantiated.

● Typically when this pattern is applied there is
also a global way of getting hold of that
single object. This can be done by having a
static method in the class.

● Another advantage is that the static method
will return a pointer/reference so it is easy to
have it return a subtype.

Example

● There are many examples of this that could
be used. Things like file systems or memory
managers where only one should be present.
 I Java you have classes like the Toolkit
class that can give information about the
system.

● As something of a general rule you call the
method that gets the singleton “instance”.
Obviously this doesn't have to be followed.
Also make constructors non-public to enforce
the singleton aspect.

Benefits and Drawbacks

● Not only can you easily return a subtype
instead of the declared type, you can also
decide later there should be 2, 3, or more of
that type with no alterations other than to the
static method.

● It's better than having a single global
because the class encapsulates the instance
and doesn't let other parts of code mess it
up.

● Better than a utility class because of
flexibility.

Bridge

● This pattern looks somewhat similar to
Adapter, but is more complex and serves a
somewhat different role.

● It is supposed to decouple an abstraction
from its implementation so that both can be
varied independently.

● This is done by putting the abstraction and
the implementation in separate inheritance
hierarchies instead of having them share
one.

Example

● Imagine having different window abstractions
and having different windowing
implementations they can exist on.

● The abstraction interface (Window) will
define broad functions while the
implementation interface will have very
specific, primitive functions.

● Then there can be implementations of both
of these interfaces that do what is required
for certain situations.

● Could be used with abstract factory.

Benefits and Drawbacks

● Completely decouples the interface and
implementation to the point that the
implementation can be changed at runtime
for a single object.

● It is easier to extend the two separate
hierarchies.

● Gives better hiding of implementation details.
 For example you could share
implementation objects, but the client will
never know.

Progress Reports

● Is there anyone who has come up with
anything significant during the last week that
wants to talk about it a bit? I'd like to start
having people give formal progress reports
during this time. If you think you would have
something to say next week please
volunteer.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

