
Builder, Facade, and Flyweight

10/14/2007

Opening Discussion

● auto-ptr always called delete (not delete[]) so
you can't use it with arrays.

● Do you have any questions about the
readings for today before we take the quiz?

Builder

● This is a creational pattern that separates the
construction of a complex object from its
representation so the same construction
process can be used for many different
representations.

● Obviously we do this when we want to vary
the representations that we have for a
certain piece of data, but we can find a
common interface for how it is built.

● The thing calling the builder is referred to as
the director. It produces a product.

Example

● GoF uses the example of reading in an RTF
document. You can have one parser that
reads in tokens and passes those to a
builder interface. Each implementation of the
builder interface builds a different
representation of the document.

● The advantage is that you only write one
parser and it work for all the representations
that you might want to add. In this example,
some of them ignore different tokens and
some handle the tokens differently.

Benefits and Drawbacks

● You can easy vary the internal
representation of the product.

● It encapsulates the code for construction and
representation. This way the client code
doesn't care about it.

● Gives fine grained control over the
construction process. This is opposed to
most other creational patterns where things
are created in one fell swoop. Here the
product is built up of a series of calls to the
builder as orchestrated by the director.

Facade

● This structural pattern provides a uniform
interface to multiple other interfaces in a
subsystem. The intention is to provide a
higher-level interface that is easier to use.

● Basically the facade is a single class with a
number of functions that pass straight
through to other functions. The idea is just to
consolidate things to help out the user.

● Of course, the user doesn't even have to
know that he/she is working with a facade.

Example

● GoF uses the example of a compiler that has
many parts (scanner, parser, etc.) but where
most applications don't need to know about
all the parts. They can instead use a facade
and the life of the developer is made simpler.

● If some aspect of the program needs the
power, it can go in and work with the things
behind the facade, but that is optional.

● This especially helps when patterns create
systems with lots of little classes.

Benefits and Drawbacks

● It shields the user from the details of the
subsystem and makes life easier.

● It provides a weak coupling between the
client code and in internal representation
making it easier to change what is happening
behind the facade.

● Doesn't technically prohibit clients from using
the pieces of the subsystem, but doing so
will remove some of the other benefits.

Flyweight

● The objective of this pattern is to allow the
sharing of objects to efficiently allow systems
that would otherwise require too many
objects.

● In order for this to work well, the shared
objects need to be identical. You can
sometimes share only some of the data
between objects and pass in differences.

● You should note that immutable objects can
make this safer and a bit more flexible in
some instances.

Example

● GoF uses characters in a text document as
an example. Without flyweight these can't be
objects. With it you have a table/pool of the
characters and then reference them.

● You could have a different table for different
fonts though personally I would consider that
as something that could be passed in.
Otherwise changing the font on a paragraph
is a somewhat time consuming process of
redirecting many pointers.

Benefits and Drawbacks

● Using the flyweight can have overhead costs
to speed because you have to look things
up. These are offset by memory savings. If
creating objects is costly the speed might not
really be hurt either.

● How much you save depends on how many
objects you need and how much sharing
happens. Big systems can gain more.

● This is often combined with Composite to
create a tree like structure.

Progress Reports

● Who are we going to have present today?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

