
Factory Method & Interpreter

11/4/2009

Opening Discussion

● Do you have any questions about the
reading for today?

Factory Method

● Defines in interface for creating an object,
but allows for subclasses to decide what
class to instantiate.

● This pattern is also known as a virtual
constructor. Remember that constructors
are inherently non-virtual.

● This pattern involves two abstractions: the
Creator and the Product. Each has different
concrete implementations where the
concrete Creators each create their own type
of concrete Product.

Example

● GoF uses the example of a framework that
allows the user to view multiple different
types of documents. The framework can be
instantiated with different application types
and each application type has its own type of
document. The problem is that the
framework only knows of abstract
applications and abstract documents. It also
knows when a new document must be
created, but not the type. The application
interface should have a factory method.

Benefits and Drawbacks

● Allows your code to deal with an interface for
creating objects so you can abstract the
details away.

● You might be forced to create new
subclasses of the creator when they don't do
much.

● They can also be beneficial when you have
parallel hierarchies. This is when you have a
hierarchy of types and those types have
some other data associated with them, but it
varies by the type. I have done this for RMI.

Interpreter

● This pattern involves creating an interpreter
and a representation for a particular (formal)
language.

● This has many similarities to a Composite. I
would even say that this is a special form of
a composite where you are parsing
sentences in the language to a composite
tree. This tree then has the ability to
recognize/operate on certain inputs.

● You have a common abstract supertype and
subtypes for each terminal/non-terminal.

Example

● GoF uses the example of an interpreter for
regular expressions. The supertype has the
operation of interpreting a string. The
subtypes represent the different possibilities
for combining expressions as well as the
literals at the leaves of the tree.

● More generally you could implement any
type of grammar that you wanted in this way.
 You have the supertype as well as
nonterminal and terminal subtypes.

Benefits and Drawbacks

● This makes it very easy to change or extend
the grammar. All you have to do is change
or add subtypes.

● It's easy to create grammar as implementing
the inheritance tree is quite simple.

● Once the grammars get complex they can be
hard to maintain.

● It is also easy to add new ways to interpret
expressions. Here the Visitor pattern could
come into play.

Progress Reports

● Has anyone gotten enough stuff together
that they want to show it? Remember to talk
about design as well as implementation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

