

Next-Generation Prog. Langs.

8-26-2010

Opening Discussion

 Welcome to class.
 How was your summer?
 Have you had any experience with

Scala/F#/X10/Fortress or anything else that you
might consider next-generation?

Schedule

 We basically run through the Scala book then
the F# book.

 After that there will be student presentations on
other languages.

Syllabus

 Let's go over the syllabus.
 The beginning part is fairly straight forward.

Course Format

 This course has a different format than you
might be used to.

 I'm not preparing lectures after today. Instead I
will moderate discussion.

 The discussion will be based on things you
bring to class based on the reading.

Grades

 Your grade comes from the combination of four
different areas.
 Projects (2) - 40%
 Daily Code – 25%
 Daily Questions – 20%
 Presentation – 15%

Projects

 You will turn in two projects.
 They can be done individually or in groups.
 I have provided a few ideas. The projects are

very open.
 They just need to be sufficient scope for the

number of people working on them.
 Each person will turn in a paper for each

project.

Daily Code

 Every class day people will bring code to class.
It can be whatever you want, but it needs to
involve the topic from the day.

 The class will be split in two for this and they
will alternate.

 The first half of the discussion is based on the
code you bring in. Inventive code will make
better discussion.

 This code can be something useful for the
project.

Daily Questions

 All students will also bring in two questions for
each class over the reading material.

 These will be used as the seeds for the rest of
the discussion.

 The quality of your questions factors into your
grade.

A Scalable Language

 The name Scala stands for Scalable Language.
 The language itself is not extremely large.
 It provides the capability to add libraries that

appear to be language extensions.
 Pass-by-name
 Methods as operators

 Scala also supports programming in the small
as well as in the large.
 REPL
 Scripting

Fully Object-Oriented

 All values in Scala are objects (primitives will be
non-objects as optimization, but it doesn't
impact programming).

 There is no static. Instead you use companion
objects.

 All operators are method invocations using
operator syntax.
 1+2 is really 1.+(2)

Highly Functional

 Scala includes many functional aspects.
 Functions are first-class values. They can be

passed around freely.
 Almost everything is an expression.
 You have function literals and higher-order

functions.
 You can curry functions or do partial

applications of functions.
 Lazy evaluation.
 Pass-by-name.

Java Compatibility

 Scala compiles to Java bytecode and can run
on any system with Java.

 Allows seamless calling of Java code.
 Java code can generally call Scala code as

well.

Concise and Expressive

 Scala code is typically very concise. You can
express a lot without too many keystrokes.

 It is highly expressive so you can say a lot with
a little.

 This is done in a generally readable manner.
Too concise/expressive tends to lead to
obfuscation.

High-Level

 You express ideas at a high level.
 Spend more time saying what you want, not

how you want it done.
 This has a tendency to reduce bugs and can

make the code easier for other people to read
and understand.

Static Typing with Type Inference

 Like Java, Scala is type safe with most of the
type checking done statically.

 Unlike Java, Scala has local type inference. As
a result, you very rarely specify types in Scala.
Most of the time you let it figure it out.

 This makes code cleaner and easier to write.

The Scala Interpreter

 The command scala can be used to bring up an
interpreter if no file is specified.

 This puts you in a REPL that can be used to
quickly test how things work.

 This is the ultimate form of programming in the
small.

 You can also load in files to test things.

Variables

 There are two keywords for declaring variables
in Scala.
 val – This is like a final variable in Java. By default

you should use this.
 var – This is like a normal variable in Java. It can

be changed.

 Whereas in most languages you are used to the type
comes before the name, in Scala it follows it. If it is
needed it comes after a colon.

 You must initialize variables at declaration.

Functions

 The keyword def is used to declare functions.
 Arguments go in parentheses like normal.

Types go after names separated by a colon.
 The arguments of a function require types.
 Return type recommended though can be

inferred.
 Equals sign unless returns Unit.

 def func(a1:T1,a2:T2):RType = expr.

 Return value of last expression.

Scripts

 You can write simple programs in files that end
in .scala and then execute them with the scala
command followed by the file name.

 No need for a main.
 Lines are executed in order from the top.
 This is part of the programming in the small

support you get in Scala.
 Unlike Java it works well for small programs.

Familiar Constructs

 If looks like you are used to, but is an
expression. So no ternary operator is needed.

 The while loop and do-while loop are just like
you are used to. They are the only statements
in Scala that aren't expressions.

Different For Loop

 The for loop is a bit different in Scala.
 It is always a for-each loop that goes through a

collection.
 for(e ← coll)

 You can easily use it for counting by using a
Range object.
 for(i ← 1 to 10)
 for(i ← 0 until 10)

 Yield makes it an expression.

Playing Around

 With any time that might be left we can pull up
Scala and play with it.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

