

Next-Generation Prog. Langs.

8-26-2010

Opening Discussion

 Welcome to class.
 How was your summer?
 Have you had any experience with

Scala/F#/X10/Fortress or anything else that you
might consider next-generation?

Schedule

 We basically run through the Scala book then
the F# book.

 After that there will be student presentations on
other languages.

Syllabus

 Let's go over the syllabus.
 The beginning part is fairly straight forward.

Course Format

 This course has a different format than you
might be used to.

 I'm not preparing lectures after today. Instead I
will moderate discussion.

 The discussion will be based on things you
bring to class based on the reading.

Grades

 Your grade comes from the combination of four
different areas.
 Projects (2) - 40%
 Daily Code – 25%
 Daily Questions – 20%
 Presentation – 15%

Projects

 You will turn in two projects.
 They can be done individually or in groups.
 I have provided a few ideas. The projects are

very open.
 They just need to be sufficient scope for the

number of people working on them.
 Each person will turn in a paper for each

project.

Daily Code

 Every class day people will bring code to class.
It can be whatever you want, but it needs to
involve the topic from the day.

 The class will be split in two for this and they
will alternate.

 The first half of the discussion is based on the
code you bring in. Inventive code will make
better discussion.

 This code can be something useful for the
project.

Daily Questions

 All students will also bring in two questions for
each class over the reading material.

 These will be used as the seeds for the rest of
the discussion.

 The quality of your questions factors into your
grade.

A Scalable Language

 The name Scala stands for Scalable Language.
 The language itself is not extremely large.
 It provides the capability to add libraries that

appear to be language extensions.
 Pass-by-name
 Methods as operators

 Scala also supports programming in the small
as well as in the large.
 REPL
 Scripting

Fully Object-Oriented

 All values in Scala are objects (primitives will be
non-objects as optimization, but it doesn't
impact programming).

 There is no static. Instead you use companion
objects.

 All operators are method invocations using
operator syntax.
 1+2 is really 1.+(2)

Highly Functional

 Scala includes many functional aspects.
 Functions are first-class values. They can be

passed around freely.
 Almost everything is an expression.
 You have function literals and higher-order

functions.
 You can curry functions or do partial

applications of functions.
 Lazy evaluation.
 Pass-by-name.

Java Compatibility

 Scala compiles to Java bytecode and can run
on any system with Java.

 Allows seamless calling of Java code.
 Java code can generally call Scala code as

well.

Concise and Expressive

 Scala code is typically very concise. You can
express a lot without too many keystrokes.

 It is highly expressive so you can say a lot with
a little.

 This is done in a generally readable manner.
Too concise/expressive tends to lead to
obfuscation.

High-Level

 You express ideas at a high level.
 Spend more time saying what you want, not

how you want it done.
 This has a tendency to reduce bugs and can

make the code easier for other people to read
and understand.

Static Typing with Type Inference

 Like Java, Scala is type safe with most of the
type checking done statically.

 Unlike Java, Scala has local type inference. As
a result, you very rarely specify types in Scala.
Most of the time you let it figure it out.

 This makes code cleaner and easier to write.

The Scala Interpreter

 The command scala can be used to bring up an
interpreter if no file is specified.

 This puts you in a REPL that can be used to
quickly test how things work.

 This is the ultimate form of programming in the
small.

 You can also load in files to test things.

Variables

 There are two keywords for declaring variables
in Scala.
 val – This is like a final variable in Java. By default

you should use this.
 var – This is like a normal variable in Java. It can

be changed.

 Whereas in most languages you are used to the type
comes before the name, in Scala it follows it. If it is
needed it comes after a colon.

 You must initialize variables at declaration.

Functions

 The keyword def is used to declare functions.
 Arguments go in parentheses like normal.

Types go after names separated by a colon.
 The arguments of a function require types.
 Return type recommended though can be

inferred.
 Equals sign unless returns Unit.

 def func(a1:T1,a2:T2):RType = expr.

 Return value of last expression.

Scripts

 You can write simple programs in files that end
in .scala and then execute them with the scala
command followed by the file name.

 No need for a main.
 Lines are executed in order from the top.
 This is part of the programming in the small

support you get in Scala.
 Unlike Java it works well for small programs.

Familiar Constructs

 If looks like you are used to, but is an
expression. So no ternary operator is needed.

 The while loop and do-while loop are just like
you are used to. They are the only statements
in Scala that aren't expressions.

Different For Loop

 The for loop is a bit different in Scala.
 It is always a for-each loop that goes through a

collection.
 for(e ← coll)

 You can easily use it for counting by using a
Range object.
 for(i ← 1 to 10)
 for(i ← 0 until 10)

 Yield makes it an expression.

Playing Around

 With any time that might be left we can pull up
Scala and play with it.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

