
1

Memoization

2-16-2006



2

Opening Discussion

■ What did we talk about last class?
■ Do you have any questions about the 

assignment?



3

Duplicated Work

■ We have looked at the technique of searching an 
entire solution space to find an optimal solution to 
a problem. We have also gone to the other 
extreme where we pick only one possible option at 
each step in solving a problem.

■ The latter doesn't work for most problems and the 
former winds up doing a lot more work than is 
needed in many problems. Today we will begin 
looking at ways to get around this.



4

Memoization

■ The simplest way to reduce duplicated work is to 
memoize our full recursive searches.

■ The idea of memoization is that we will pass in an 
array (or possibly some other structure) that stores 
solutions that we have found so far. This is a bit 
different than “smart breadcrumbs” though the two 
are often lumped together.

■ When thinking about memoizing our thought 
process should be that when you enter the 
recursion you check to see if you have solved this 
before. If so return that value. Otherwise do the 
recursion and set the value to the solution that you 
find.



5

Memoizing Fibonacci Numbers

■ As a simple example, we can memoize a 
recursive function to calculate Fibonacci numbers. 
You all know that this is a prime candidate for the 
process as it is not only simple, it duplicates all 
types of work.



6

Weighted Interval Scheduling

■ We showed that standard interval scheduling is a 
greedy problem when we want to maximize how 
many events we schedule. If we place weights, 
w(n), on the events greedy no longer works.

■ To help with solving this efficiently we will sort the 
intervals by finish time and keep an array p(n) 
which is the index of the last interval that doesn't 
overlap with interval n.

■ Given this, we can define the optimal solution on 
the first n intervals as the max of w(n)+opt(p(n)) 
and opt(n-1). Basically, we either take this option 
or we don't.



7

Memoizing It

■ The problem is that this recursive solution will 
calculate the optimal value for the first few 
elements many times. We can keep a simple array 
that will store the solutions once they are found 
and do lookups on that array to get a significant 
speed boost.

■ How fast is it now? This will make it O(n) because 
the array has n elements and we calculate each 
one exactly once.



8

Memoizing 0/1 Knapsack

■ Let's go ahead and write a full recursive version of 
the 0/1 knapsack problem now.

■ How do we memoize this problem? What do we 
keep track of in our array?



9

When to Memoize?

■ In general we want to memoize any time when we 
see that our recursive solution is calculating the 
same thing more than once. This is common when 
a problem exhibits optimal substructure.

■ As we will see next time, we can use dynamic 
programming instead of memoization when we 
have optimal substructure. DP will be slightly more 
efficient but memoization might be more intuitive.

■ Memoization can also be used in situations where 
DP can't because subproblems aren't solved in a 
nice order or because we don't have true optimal 
substructure.



10

Memoizing TSP

■ This latter case is exemplified by the traveling 
salesman problem. It does not have optimal 
substructure. However, the standard recursive 
solution to this does repeat work.

■ It is tempting to do this with “smart breadcrumbs”, 
but that isn't correct. It could return non-optimal 
results. We need to use memoization so we store 
the length of completing the rest of the cycle from 
a given state?

■ What is our state and how does that index into an 
array?



11

Reminders

■ I should have your test already, but if I don't you 
should probably fix that.

■ Read up on dynamic programming for next class 
and remember that assignment #3 is due on 
Tuesday.


