
1

Dynamic Programming

2-21-2006

2

Opening Discussion

■ What did we talk about last class?
■ Do you have any questions about the

assignment?
■ As a hint on this and other assignments, you

should write methods that validate the internal
structure of the data structure and call them
liberally when you have bugs.

3

When to Memoize?

■ In general we want to memoize any time when we
see that our recursive solution is calculating the
same thing more than once. This is common when
a problem exhibits optimal substructure.

■ As we will see next time, we can use dynamic
programming instead of memoization when we
have optimal substructure. DP will be slightly more
efficient but memoization might be more intuitive.

■ Memoization can also be used in situations where
DP can't because subproblems aren't solved in a
nice order or because we don't have true optimal
substructure.

4

Memoizing TSP

■ This latter case is exemplified by the traveling
salesman problem. It does not have optimal
substructure. However, the standard recursive
solution to this does repeat work.

■ It is tempting to do this with “smart breadcrumbs”,
but that isn't correct. It could return non-optimal
results. We need to use memoization so we store
the length of completing the rest of the cycle from
a given state?

■ What is our state and how does that index into an
array?

5

Dynamic Programming

■ When a problem exhibits optimal substructure it is
possible to convert the recursive algorithm to an
iterative one that will solve the problem in provably
polynomial time.

■ Once again, optimal substructure is the property of
a problem where the optimal solution to a full
problem is composed of optimal solutions to
smaller problems.

■ The idea with dynamic programming is that we will
fill in a table of solutions from the bottom up so
that at each new element we are always using
values we have already calculated.

6

Constructing a DP Solution

■ The method to create a DP solution to a problem
begins the same way as searching solution space
or memoization, with the description of the
problem in terms of a recurrance relationship. The
trick is to find the right recurrance.

■ Once we have that we make a table with as many
dimensions we we have arguments to the
recursive function and deal with the simple
boundaries. Then we loop through the table filling
in values by looking things up in the table.

■ The last step, if needed, is to reconstruct the
solution by working back down the table from top
to bottom.

7

Weighted Interval Scheduling: DP

■ Let's revisit the problem that we did last time of
scheduling weighted intervals to maximize the
weights of the events that are scheduled.

■ First we want to write down the recursive function.
■ Once we have that we can use an array to store

values and build them up from the bottom.

8

Longest Common Subsequence

■ This is probably the most common example of
dynamic programming. Given two strings, you
want to find the longest subsequence that they
have in common. A subsequence doesn't have to
be consecutive characters, it just requires that the
characters appear in the proper order.

■ Let's build a DP solution for this problem.

9

0/1 Knapsack

■ This is another classic DP problem. Again we will
begin by writing the recursive function.

■ What happens to us if weight isn't an integer?
How must we change our code to make it work?

10

Reminders

■ Next time we will look at some other DP problems
that you likely haven't seen before.

■ Remember to turn in assignment #3 today.

