
1

Dynamic Programming

2-23-2006

2

Opening Discussion

■ What did we talk about last class?

3

0/1 Knapsack

■ This is another classic DP problem. Again we will
begin by writing the recursive function.

■ What happens to us if weight isn't an integer?
How must we change our code to make it work?

■ Let's write code for the integer weight version then
look into changing it.

4

Segmented Least Squares

■ Here the problem is that we want to do a linear fit
to some data, but potentially in a piecewise
manner. That is to say that the data might be well
fit by more than one line. The question is, what is
the fewest number of lines that fit the data well.

■ A single least squares fit with points (xi, yi) is given
by y=ax+b where a and b are given by.

a=
n∑ x i yi−∑ x i∑ yi

n∑ x i
2−∑ xi

2

b=∑ y i−a∑ xi
n

5

Solution

■ We give any solution partition a penalty equal to
the number of segments in the solution times
some constant C plus the errors of the best fit on
all the partitions.

■ We let opt(i) denote the optimal solution for p1..pi
and ei,j is the error for the best fit for points pi..pj.

■ If the last segment of the partition goes from i to n
then opt(n)=ei,n+C+opt(i-1).

■ More generally, opt(j)=min(ei,j+C+opt(i-1) for all i
between 1 and j.

6

RNA Secondary Structure

■ Now we will switch to a biology application of
dynamic programming. We consider RNA
molecules as a string of bases from the set
{A,C,G,U}. The bases like to form pairs, but A
only pairs with U and C only pairs with G.

■ The long chair will bend around to make a
secondary structure so that bases can pair up.
There are a few rules we will follow on how things
can pair up. Elements i and j can pair up if
 They want to match A-U or C-G.
 i<j-4 (no sharp bending)
 No base is in more than one pairing.
 If i,j and k,l are pairs then you can't have i<k<j<l. This

is the no crossing rule.

7

Solution

■ We want to simply maximize the number of bases
in pairs.

■ The no crossing rule forces us do a recursion on
two arguments. The reason is that once we
include a pair i,j we divide the problem into two
pieces, one with bases between i and j and one
with pieces outside i and j.

■ This gives the following recursion.
opt(i,j)=max(opt(i,j-1),max(1+opt(i,t-1)+opt(t+1,j-
1))) where t is taken over all bases from i to j-4
that fit the rules for matching with j. Use a value of
0 if j-i<4

8

Coding

■ Given that recursion there is still a trick of figuring
out how to code the solution with DP. Basically,
how do we go about filling in our array? It turns
out that we are always making calls with smaller
intervals so we can easily fill up the array by
starting with the smallest intervals and working up.
 Make the outer loop be the interval size, not the
index. The inner loop can be the first index.

9

Sequence Alignment

■ This is the big brother of LCS and it is also has
biology applications.

■ Here we have two strings and we want to find an
optimal matching between the strings. For LCS,
optimal just meant we matched as much as
possible. Here we put a cost, δ, on gaps where
we don't match between strings. We also have a
mismatch penalty αpq for pairing a p with a q. So
we could match things that aren't perfect matches,
but there is a penalty for it.

■ We solve this the same way as LCS, but minimize
the penalty.

10

Reminders

■ I don't have a description up for the next
assignment, but you will be writing a data structure
for doing disjoint sets with the disjoint sets forest
approach. If you don't feel like taking the weekend
off or spending it on other tasks you could begin
looking at that.

