
1

Disjoint Sets

2-28-2006



2

Opening Discussion

■ What did we talk about last class?
■ Do you have any questions about the test?
■ Do you have any questions about the 

assignment?



3

Disjoint Sets

■ Our data structure for today is that of a disjoint set. 
The idea is that we have different elements and 
each element belongs to one set. We want to be 
able to efficiently determine if two elements are in 
the same set and also be able to merge sets 
together quickly.  Each set is specified by a 
representative element.

■ Typically we start off with all of our elements so 
each has its own set and perform a combination of 
unions and queries of sets from there.

■ We will say that there are n elements total and the 
number of operations we do is m.  Since we have 
to make all the individual sets to start with, m≥n.



4

Using Linked Lists

■ One way to implement this is with linked lists.  
Each set is a singly linked list where each node 
points back to the first element and that is the 
representative element.

■ Making a list is O(1). Finding the representative is 
O(1). However, doing a union requires walking 
one of the lists to change the pointers to the new 
representative elements.

■ In a simple implementation this gives O(n2) 
behavior for a full build and merge down to one 
set. That means each operation takes O(n) 
amortized time.



5

Improving the Linked Lists

■ This can be improved if we make a slight 
alteration to the code. Make each list/set maintain 
how many elements are in it. Then when we do a 
union we reset the pointers on the shorter list.

■ This improves the time for all m operations to 
O(m+n log n).



6

Using a Forest

■ Instead of using linked lists, we can use trees. In 
this case, each node represents an individual 
element, and the nodes have parent pointers. The 
root node is the representative element.

■ CLR has the root node point to itself though it I 
haven't seen a reason you couldn't make it point to 
null in their implementation.

■ A simple implementation of this can be just as bad 
as the linked lists because while union is now fast, 
determining what set an element is in requires 
walking up the tree and the tree can degenerate 
into a linked list.



7

Union by Rank

■ One step we can take to prevent things from 
degenerating into a linked list is to have each node 
keep track of a rank, which is an estimate of the 
height. When you do a union simply make the tree 
with the lower rank be the child.

■ Rank can be easily maintained because when you 
union to trees with equal rank you increment the 
rank of the root by one.  Otherwise they never 
change.

■ This addition alone provides an O(m log n) total 
runtime.



8

Path Compression

■ A second optimization that can be performed is to 
basically flatten out the tree to two levels every 
time we find the representative element.

■ This can be easily done with a recursive function 
to find the representative element. This function 
recurses, then sets the pointer to what the 
recursion returned.

■ This way you do O(log n) work the first time you 
get the representative elements, but you flatten 
out the tree so you will do less work the next time.



9

Order of Disjoint Set Forest

■ Combining path compression with union by rank 
gives an algorithm with a rather interesting rank.

■ The order of that data structure is O(m α(n)) 
where α is the inverse Ackermann's function.  This 
is a function that grows so incredibly slowly that 
for all practical applications it is O(m).



10

Reminders

■ We have no class on Thursday.  Remember to 
turn in your test.  Since everyone is typing these 
and this one is fairly simple, go ahead and e-mail 
me your answers when they are done.


