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Opening Discussion

■ What did we talk about last class?
■ Do you have any questions about the 

assignment?
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Minimum Spanning Trees

■ Last time I did the brief overview of a greedy 
algorithm.  Now we want to look at the specifics.

■ What I outlined last time is Kruskal's algorithm.  
We treat the graph as a forest and each iteration 
add the shortest edge that connects two separate 
trees. An efficient implementation uses disjoint 
sets and sorts the edges from smallest to largest. 
O(E log V)

■ Prim's algorithm grows a single tree and picks the 
minimum edge that connects a new vertex to the 
tree.  An efficient implementation keeps a heap of 
the vertices with the order determined by the 
shortest edge to the tree. O(E log V) or O(E+V log 
V)
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Single Source Shortest Path

■ Shortest path has optimal substructure so you 
know it can be solved DP and might be solvable 
greedy.

■ No solution to this includes a cycle.  If a graph has 
a cycle of negative length then the shortest path is 
not well defined.  All positive cycles would be 
eliminated and zero length cycles can be cut out 
WLOG.

■ A critical question is whether you allow negative 
weight edges in your graph.  The answer to that 
determines what algorithm you have to use.
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Initialization and Relaxation

■ All the algorithms we will talk about keep distance 
estimate, d, and a parent, p, for each vertex.

■ We initialize the distance estimate with infinity for 
all nodes except the source which gets a value of 
0.  All parents are set to nil.

■ We can relax node v w.r.t u by checking if 
d(v)>d(u)+w(u,v).  If it is, we alter the weight and 
make p(v)=u.
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Bellman-Ford

■ This algorithm works on general weighted, 
directed graphs.  Negative edges are allowed.

■ After initializing, this algorithm runs through all 
edges in the graph V-1 times relaxing the nodes 
for each edge in turn.

■ A check is then done to see if there are any 
negative cycles.  That will happen if any edge 
could be relaxed again.

■ This algorithm is O(VE).
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DAGs

■ For a directed acyclic graph we can use a simpler 
algorithm.

■ First to a topological sort of the DAG.  (This takes 
O(V+E) time.)

■ Then initialize and run through the sorted list of 
vertices.  Relax every edge coming out of each 
vertex in turn.

■ The full runtime for this algorithm is also O(V+E).
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Dijkstra

■ If all the weights are non-negative we can use a 
superior, greedy algorithm.

■ Here we keep a set S (that is a subset of V) of 
vertices we know the minimum distance to.  It 
begins as the empty set.  We also keep a min 
queue of the vertices sorted by their current 
distance elements.

■ While the queue isn't empty we pull of the 
minimum element and add it to S.  Then we relax 
all the edges coming out of that new vertex.  Note 
the queue must be updated to reflect this 
relaxation.

■ If a Fibonacci heap is used this runs in O(V log 
V+E) time.
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Reminders

■ Enjoy your spring break.  Assignment #5 is due 
when you get back so you might want to practice 
some coding while you off having fun.  Then 
again, what could be more fun than coding?


