
1

All-Pairs Shortest Path

3-21-2006

2

Opening Discussion

■ What did we talk about last class?
■ Do you have any questions about the

assignment?
■ Grades have been posted for assignment #1.

Hopefully I should be able to get through one or
two more on Wednesday.

3

All-Pairs Shortest Path

■ For some problem you want to know the shortest
path from all vertices to all other vertices. You
could solve this doing a single source shortest
path from each vertex, but that duplicates a lot of
work because shortest paths have optimal
substructure.

■ These algorithms compute not only the lengths of
the paths, but the paths themselves which are
stored as a predecessor matrix. pij is the parent of
j on the shortest path from i.

4

Matrix Multiplication

■ A simple way to calculate shortest paths is with a
DP algorithm that mirrors matrix multiplication.
The idea is that each step you are finding the
shortest path between all vertices that is one
“jump” longer than what you had before. The
initial adjacency matrix gives the shortest paths if
you can only go over one edge.

■ We take two matrices and instead of summing the
products, we take the minimum of the sum. This
gives us a matrix representing one extra jump.

■ We can improve performance by doing repeated
“squaring” instead of doing “multiply” N times.
This gives O(n3 log n) performance.

5

Floyd-Warshall

■ This is a different DP solution for the all-pairs
shortest path problem. In this representation we
grow the number of intermediate vertices that we
consider. So we start with the adjacency matrix
then find a new matrix that would allow paths that
have vertex 1 as an intermediate. Then allow 2 as
well and so on.

■ So we loop through adding new vertices, k. The
recursion looks like this.

■ This gives O(n3) code calculating from bottom up.

d ij
k ={ wij if k=0

mind ij
k−1 , d ik

k−1d kj
k−1 if k≥1}

6

Paths with Floyd-Warshall

■ A recursive function can also be defined for
getting the parents on the paths using the Floyd-
Warshall method. The idea is that the parent
matrix starts as being nil if there is no path from i
to j or i if there is an edge from i to j.

■ At each step we see if the intermediate point is
used. If not, the parent node stays the same as it
had been for the earlier k. If so, then the parent is
the parent on the path of k to j.

7

Johnson's Algorithm

■ This algorithm doesn't use an adjacency matrix
and is better for sparse matrices. It uses the
single source shortest path algorithms that we
discussed previously. The trick is that if there are
negative edges it will change the weight on the
edges so they are positive and it is safe to use
Dijkstra's algorithm.

8

Reminders

■ Remember that assignment #5 is due today.

