
1

Linked Structures

1-17-2006

2

Opening Discussion

■ Do you have any questions about the reading?
■ Do you have any questions about the

assignment?
■ Do you have any questions about the test?

3

Linked Structures

■ This term might conjure an image of a linked list
into your head, but it is far more broad than that.
A linked list is basically the simplest form of linked
structure. The full class includes trees and graphs
as well. Basically, it is all data structures that
have different linked components.

■ A flat array is not a link structure, but you can
emulate linked structures with arrays. This is
actually very helpful in some languages or if you
want to dump data structures to file.

4

Two Types of Data Structures

■ There are two main categories of data structures
that we need to consider. Which one want to
produce is very significant when you are making
your design.

■ The real question is whether you have control over
where items go in the structure. If you get to place
things by an index that is fine. If you can't, you
typically are dealing with a map or keyed data
structure where items are stored based on some
key value.

■ Every data structure you talk about can be made
as a map though the ones you use most typically
don't make much sense that way.

5

Linked List Review

■ You should all remember the primary terminology
for linked lists and the types we might make.
 singly linked, doubly linked, circular

■ The list interface can be implemented using arrays
as well.

■ What are examples of when a list is being used as
a mapped data structure? (The hint here is that
you can't specify where things are placed. Notice
that is a very fundamental change in the interface
of the data structure.)

■ Sentinals can make life much nicer.

6

Trees

■ Trees are a subset of directed graphs where one
node/vertex, the root, has 0 incoming edges and
all other nodes/vertices have 1 incoming edge. In
a tree there are no cycles and there is exactly one
path from the root to any other node in the tree.

■ Trees are probably the favorite data structure of
CS because they are remarkably flexible, yet have
enough limitations to be manageable. Tree type
structures also provide the hierarchical
arrangement of data that humans seem to
naturally gravitate towards.

7

Binary Search Trees

■ In the case of data structures, the tree type we
care about the most if the BST. This is a mapped
data structure sorted by some key value with
lower keys going to the left and greater keys going
to the right.

■ As with all linked data structures, adding and
removing is relatively fast. The binary nature of a
BST also allows for logarithmic time algorithms for
searching out certain keys.

■ BSTs are well behaved on random data. They
degrade to linked lists on ordered data.

8

Balanced Binary Trees

■ To keep thing efficient, we need to keep the trees
well balanced. Two ways of doing this are with
AVL trees and red-black trees.

■ In both of these we occasionally rotate data
around to preserve some type of balance
condition.

■ Let's talk about single and double rotations and
when we would do them in an AVL tree.

9

Reminders

■ The test is due when you come to class for next
class.

