
1

Computational Geometry

4-18-2006

2

Opening Discussion

■ What did we talk about last class?
■ Do you have any questions about the

assignment?

3

Convex Hulls

■ The idea is that we are given a set of points and
we want to find the smallest convex polygon such
that all the points are either interior to or on the
edge of that polygon.

■ We will talk about two methods that use rotational
sweep to solve this. There are also incremental
methods, divide-and-conquer methods, and
prune-and-search methods.

■ A convex hull can be used to find the most distant
pair of points in a set.

4

Graham's Scan

■ Pick the lowest point and sort the other points by
angle between that point and them.

■ Put the first three points on a stack.
■ Loop through all the other points in sorted order.

 While the angle including the top two points turns right
pop a point off the stack.

 Push the point with the angle going left onto the stack.
■ After this is done the stack contains the points for

the convex hull in counterclockwise order.
■ This process is O(n log n) for the sort.

5

Jarvis's March

■ Again pick the lowest point as the starting point.
Then find the point with the smallest polar angle
relative to that point and include it.

■ Repeat this process using the newest point added
each time.

■ This process is O(nh) where h is the number of
segments in the convex hull.

6

Closest Pair of Points

■ Brute forcing this is an O(n2) algorithm. We will do
it in O(n log n) with a divide an conquer method.

■ Each invocation will get a subset of points. We
have two arrays with the points sorted by x and y
respectively. The recursion terminates when n<=3
at which point we use brute force.

■ We divide the set with a vertical line such that half
the points are on each side. We make recursive
calls on those two subsets and get the closest
points on each half.

■ The shortest pair for the whole set is either one of
those two or contains points separated across the
dividing line.

7

Combining Solutions

■ The trick is in finding if there are points across the
boundary that are closer. Given the smaller of the
two separations for the two sides we make an
array Y' that is the elements of our y sorted array
that are within the shortest known separation
distance of the separation line.

■ For each point in Y' we consider the 7 points after
it in the array and see if any are less distant than
what we have seen previously.

■ The key to this is that there only have to be 7
points because no more than 8 total points can be
that close without one of our recursive checks
finding a pair.

8

KD-Trees

■ This is a spatial tree that in binary in nature. Each
node splits the children across a specific value of
one axis.

■ These are simple to write and are good for high
dimensional spaces.

■ There are different ways for picking how and
where to split. There are also questions for how
many data elements can be in each node.

■ Let's consider the simple case of only allowing one
data point per leaf node and nothing internal.

9

BSP-Trees

■ Imagine a KD-tree with the split made in a random
orientation, not axis aligned. This is great for
representing complex geometries and doing
efficient collision/overlap detection.

10

Reminders

■ I have nothing to remind you of.

