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Opening Discussion

■ What did we talk about last class?
■ Do you have any questions about the 

assignment?
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Approximation Algorithms

■ As you know, some problems simply aren't 
tractable for finding exact solutions.  In 
optimization problems we can instead look for 
approximations.

■ An approximation algorithm is most useful when 
we can prove that the approximation is within a 
certain range of the truly optimal solution.  We 
describe a p-approximation as one where it finds a 
solution such that the ratio of the approximation 
and the actual solutions is no greater than p.

■ So a 2-approximation algorithm returns a solution 
that is within a factor of 2 of the actual solution.
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Vertex Covering

■ The problem here is that we are given an 
undirected graph and we want to find the smallest 
set of vertices such that every edge has at least 
one vertex in that set.

■ Obviously we could find the actual solution in 2n 
time with a brute force search.

■ A 2-approximation algorithm can be made by 
consistently taking edges such that neither vertex 
on the edge is currently in the set and adding their 
vertices to the set.

■ This is provably a 2-approximation because a true 
solution would have to have at least one vertex 
from each of the selected edges.
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TSP

■ You are all familiar with the traveling salesman 
problem and the fact that brute force takes 
factorial time while even memoizing requires 
exponential time and space.

■ We can, however, find a polynomial 2-
approximation algorithm iff the graph obeys the 
triangle inequality.

■ The algorithm is simple, first build a minimum 
spanning tree, then walk the tree in preorder and 
have your circuit include the vertices in the order 
they are visited.

■ The MST can't be longer than the optimal solution 
and the circuit is smaller than two MSTs.
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TSP without Triangle Inequality

■ If you don't have the triangle inequality, TSP can 
only be approximated in polynomial time if P=NP.

■ The reason is that you can design an instance of 
TSP such that the approximation algorithm would 
be forced to find a Hamiltonian circuit on a general 
graph.

■ If you had such an approximation algorithm you 
could find Hamiltonian cycles in P time, but the 
Hamiltonian cycle problem is NP-complete.



7

Set Covering

■ Imagine you have a set, X, along with a set of 
subsets, F, of that set such that every element of 
X is in at least one element of F.

■ The question is, what is the minimal number of 
elements of F that are required to “cover” X?

■ We can use a greedy method to approximate this 
where we get a new set each time such that it 
includes the most uncovered elements of X.  This 
can be done in linear time, but CLRS leaves the 
exact method as an exercise for the reader.

■ This method is a (ln |X| +1)-approximation.  It is 
better for small sets but doesn't get all that bad 
even for large sets.
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Reminders

■ I will be handing out your last test on Tuesday.  I'm 
also accepting assignments though you can't get 
points for speed if you turn it in this late.  Make 
sure to e-mail me telling me you have turned it in 
so I don't miss it.


