
1

Approximation Algorithms

4-20-2006

2

Opening Discussion

■ What did we talk about last class?
■ Do you have any questions about the

assignment?

3

Approximation Algorithms

■ As you know, some problems simply aren't
tractable for finding exact solutions. In
optimization problems we can instead look for
approximations.

■ An approximation algorithm is most useful when
we can prove that the approximation is within a
certain range of the truly optimal solution. We
describe a p-approximation as one where it finds a
solution such that the ratio of the approximation
and the actual solutions is no greater than p.

■ So a 2-approximation algorithm returns a solution
that is within a factor of 2 of the actual solution.

4

Vertex Covering

■ The problem here is that we are given an
undirected graph and we want to find the smallest
set of vertices such that every edge has at least
one vertex in that set.

■ Obviously we could find the actual solution in 2n
time with a brute force search.

■ A 2-approximation algorithm can be made by
consistently taking edges such that neither vertex
on the edge is currently in the set and adding their
vertices to the set.

■ This is provably a 2-approximation because a true
solution would have to have at least one vertex
from each of the selected edges.

5

TSP

■ You are all familiar with the traveling salesman
problem and the fact that brute force takes
factorial time while even memoizing requires
exponential time and space.

■ We can, however, find a polynomial 2-
approximation algorithm iff the graph obeys the
triangle inequality.

■ The algorithm is simple, first build a minimum
spanning tree, then walk the tree in preorder and
have your circuit include the vertices in the order
they are visited.

■ The MST can't be longer than the optimal solution
and the circuit is smaller than two MSTs.

6

TSP without Triangle Inequality

■ If you don't have the triangle inequality, TSP can
only be approximated in polynomial time if P=NP.

■ The reason is that you can design an instance of
TSP such that the approximation algorithm would
be forced to find a Hamiltonian circuit on a general
graph.

■ If you had such an approximation algorithm you
could find Hamiltonian cycles in P time, but the
Hamiltonian cycle problem is NP-complete.

7

Set Covering

■ Imagine you have a set, X, along with a set of
subsets, F, of that set such that every element of
X is in at least one element of F.

■ The question is, what is the minimal number of
elements of F that are required to “cover” X?

■ We can use a greedy method to approximate this
where we get a new set each time such that it
includes the most uncovered elements of X. This
can be done in linear time, but CLRS leaves the
exact method as an exercise for the reader.

■ This method is a (ln |X| +1)-approximation. It is
better for small sets but doesn't get all that bad
even for large sets.

8

Reminders

■ I will be handing out your last test on Tuesday. I'm
also accepting assignments though you can't get
points for speed if you turn it in this late. Make
sure to e-mail me telling me you have turned it in
so I don't miss it.

